[1] Blomvall J., Shapiro A.:
Solving multistage asset investment problems by the sample average approximation method. Math. Program. 108 (2006), 571–595
MR 2238715 |
Zbl 1130.90373
[2] Chiralaksanakul A.: Monte Carlo Methods for Multi-stage Stochastic Programs. PhD. Thesis, University of Texas at Austin, 2003
[3] Chiralaksanakul A., Morton D.: Assessing policy quality in multi-stage stochastic programming. Stochastic Programming E-Print Series, 2004
[4] Fourer R., Gay D. M., Kernighan B.W.: AMPL: A Modeling Language for Mathematical Programming. Second edition. Thomson, Canada 2002
[5] Frauendorfer K.:
Barycentric scenario trees in convex multistage stochastic programming. Math. Programming 75 (1996), 277–293
MR 1426642 |
Zbl 0874.90144
[6] Glasserman P.:
Monte Carlo Methods in Financial Engineering. Springer-Verlag, New York 2004
MR 1999614 |
Zbl 1038.91045
[7] Heitsch H., Römisch W.:
Scenario tree modelling for multistage stochastic programs. Math. Programming. To appear
MR 2470797
[8] Hilli P., Koivu M., Pennanen, T., Ranne A.:
A stochastic programming model for asset liability management of a Finnish pension company. Ann. Oper. Res. 152 (2007), 115–139
MR 2303128 |
Zbl 1132.91493
[10] Kuhn D.:
Generalized Bounds for Convex Multistage Stochastic Programs. Springer-Verlag, Berlin 2005
MR 2103400 |
Zbl 1103.90069
[11] Niederreiter H.:
Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia 1992
MR 1172997 |
Zbl 0761.65002
[12] Niederreiter H., Talay D.:
Monte Carlo and Quasi-Monte Carlo Methods 2004. Springer-Verlag, Berlin 2006
MR 2208697 |
Zbl 1084.65005
[13] Olsen P.:
Discretizations of multistage stochastic programming problems. Math. Programming Stud. 6 (1976), 111–124
MR 0462589 |
Zbl 0374.90053
[14] Pennanen T.:
Epi-convergent discretizations of multistage stochastic programs. Math. Oper. Res. 30 (2005), 245–256
MR 2125146 |
Zbl 1165.90014
[15] Pennanen T.:
Epi-convergent discretizations of multistage stochastic programs via integration quadratures. Math. Programming, Series B. To appear
MR 2421289 |
Zbl 1165.90014
[16] Pennanen T., Koivu M.: Integration quadratures in discretization of stochastic programs. SPEPS E-Print Series, 2002
[17] Pflug G.:
Scenario tree generation for multiperiod financial optimization by optimal discretization. Math. Programming 89 (2001), 251–271
MR 1816503
[18] Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P.:
Numerical Recipes in C. Cambridge University Press, Cambridge 1992
MR 1201159 |
Zbl 1078.65500
[19] Rockafellar R. T., Wets R. J.-B.:
Continuous versus measurable recourse in $N$-stage stochastic programming. J. Math. Anal. Appl. 48 (1974), 836–859
MR 0406509 |
Zbl 0309.90039
[20] Rockafellar R. T., Wets R. J.-B.:
Nonanticipativity and $L^1$-martingales in stochastic optimization problems. Math. Programming Stud. (1976), 170–187
MR 0462590
[21] Shapiro A.:
Inference of statistical bounds for multistage stochastic programming problems. Math. Methods Oper. Res. 58 (2003), 57–68
MR 2002322 |
Zbl 1116.90384
[22] Shapiro A.:
On complexity of multistage stochastic programs. Oper. Res. Lett. 34 (2006), 1–8
MR 2186066 |
Zbl 1080.90056
[23] Sloan I. H., Joe S.:
Lattice Methods for Multiple Integration. The Clarendon Press Oxford University Press, New York 1994
MR 1442955 |
Zbl 0855.65013
[24] Sobol’ I. M.:
The distribution of points in a cube and the approximate evaluation of integrals. U.S.S.R. Computational Math. And Math. Phys. (1967), 86–112
MR 0219238 |
Zbl 0185.41103