Previous |  Up |  Next

Article

Keywords:
two-stage stochastic programs; polyhedral risk objectives; robustness; contamination; bond portfolio management problem
Summary:
In applications of stochastic programming, optimization of the expected outcome need not be an acceptable goal. This has been the reason for recent proposals aiming at construction and optimization of more complicated nonlinear risk objectives. We will survey various approaches to risk quantification and optimization mainly in the framework of static and two-stage stochastic programs and comment on their properties. It turns out that polyhedral risk functionals introduced in Eichorn and Römisch [Eich-Ro] have many convenient features. We shall complement the existing results by an application of contamination technique to stress testing or robustness analysis of stochastic programs with polyhedral risk objectives with respect to the underlying probability distribution. The ideas will be illuminated by numerical results for a bond portfolio management problem.
References:
[1] Acerbi C.: Spectral measures of risk: A coherent representation of subjective risk aversion. J. Bank. Finance 26 (2002), 1505–1518
[2] Ahmed S.: Convexity and decomposition of mean-risk stochastic programs. Math. Programming A 106 (2006), 447–452 MR 2216788 | Zbl 1134.90025
[3] Artzner P., Delbaen F., Eber, J., Heath D.: Coherent measures of risk. Math. Finance 9 (1999), 203–228. See also , pp. 145–175 MR 1850791 | Zbl 0980.91042
[4] Bertocchi M., Dupačová, J., Moriggia V.: Sensitivity analysis of a bond portfolio model for the Italian market. Control Cybernet. 29 (2000), 595–615 Zbl 1017.91036
[5] Bertocchi M., Moriggia, V., Dupačová J.: Horizon and stages in applications of stochastic programming in finance. Ann. Oper. Res. 142 (2006), 63–78 MR 2222910 | Zbl 1101.90043
[6] Dempster M. A. H., ed.: Risk Management: Value at Risk and Beyond. Cambridge Univ. Press, Cambridge 2002 MR 1892188 | Zbl 1213.91087
[7] Dupačová J.: Stability in stochastic programming with recourse – contaminated distributions. Math. Programing Stud. 27 (1986), 133–144 MR 0836754 | Zbl 0594.90068
[8] Dupačová J.: Stability and sensitivity analysis in stochastic programming. Ann. Oper. Res. 27 (1990), 115–142 MR 1088990
[9] Dupačová J.: Postoptimality for multistage stochastic linear programs. Ann. Oper. Res. 56 (1995), 65–78 MR 1339785 | Zbl 0838.90089
[10] Dupačová J.: Scenario based stochastic programs: Resistance with respect to sample. Ann. Oper. Res. 64 (1996), 21–38 MR 1405628 | Zbl 0854.90107
[11] Dupačová J.: Reflections on robust optimization. In: Stochastic Programming Methods and Technical Applications (K. Marti and P. Kall, eds.), LNEMS 437, Springer, Berlin 1998, pp. 111–127 MR 1650772 | Zbl 0909.90218
[12] Dupačová J.: Stress testing via contamination. In: Coping with Uncertainty. Modeling and Policy Issues (K. Marti et al., eds.), LNEMS 581, Springer, Berlin 2006, pp. 29–46 MR 2278935 | Zbl 1151.90504
[13] Dupačová J.: Contamination for multistage stochastic programs. In: Prague Stochastics 2006 (M. Hušková and M. Janžura, eds.), Matfyzpress, Praha 2006, pp. 91–101. See also SPEPS 2006-06
[14] Dupačová J., Bertocchi, M., Moriggia V.: Testing the structure of multistage stochastic programs. Submitted to Optimization Zbl 1168.90567
[15] Dupačová J., Hurt, J., Štěpán J.: Stochastic Modeling in Economics and Finance, Part II. Kluwer Academic Publishers, Dordrecht 2002 MR 2008457
[16] Dupačová J., Polívka J.: Stress testing for VaR and CVaR. Quantitative Finance 7 (2007), 411–421 MR 2354778 | Zbl 1180.91163
[17] Eichhorn A., Römisch W.: Polyhedral risk measures in stochastic programming. SIAM J. Optim. 16 (2005), 69–95 MR 2177770 | Zbl 1114.90077
[18] Eichhorn A., Römisch W.: Mean-risk optimization models for electricity portfolio management. In: Proc. 9th International Conference on Probabilistic Methods Applied to Power Systems (PMAPS 2006), Stockholm 2006
[19] Eichhorn A., Römisch W.: Stability of multistage stochastic programs incorporating polyhedral risk measures. To appear in Optimization 2008 MR 2400373 | Zbl 1192.90131
[20] Föllmer H., Schied A.: Stochastic Finance. An Introduction in Discrete Time. (De Gruyter Studies in Mathematics 27). Walter de Gruyter, Berlin 2002 MR 1925197 | Zbl 1126.91028
[21] Kall P., Mayer J.: Stochastic Linear Programming. Models, Theory and Computation. Springer-Verlag, Berlin 2005 MR 2118904 | Zbl 1211.90003
[22] Mulvey J. M., Vanderbei R. J., Zenios S. A.: Robust optimization of large scale systems. Oper. Res. 43 (1995), 264–281 MR 1327415 | Zbl 0832.90084
[23] Ogryczak W., Ruszczyński A.: Dual stochastic dominance and related mean-risk models. SIAM J. Optim. 13 (2002), 60–78 MR 1922754 | Zbl 1022.91017
[24] Pflug G. Ch.: Some remarks on the Value-at-Risk and the Conditional Value-at-Risk. In: Probabilistic Constrained Optimization, Methodology and Applications (S. Uryasev, ed.), Kluwer Academic Publishers, Dordrecht 2001, pp. 272–281 MR 1819417 | Zbl 0994.91031
[25] Pflug G. Ch., Römisch W.: Modeling, Measuring and Managing Risk. World Scientific, Singapur 2007 MR 2424523 | Zbl 1153.91023
[26] Rockafellar R. T., Uryasev S. : Conditional value-at-risk for general loss distributions. J. Bank. Finance 26 (2001), 1443–1471
[27] Rockafellar R. T., Uryasev, S., Zabarankin M.: Generalized deviations in risk analysis. Finance Stochast. 10 (2006), 51–74 MR 2212567 | Zbl 1150.90006
[28] Römisch W.: Stability of stochastic programming problems. Chapter 8 in , pp. 483–554 MR 2052760
[29] Römisch W., Wets R. J-B.: Stability of $\varepsilon $-approximate solutions to convex stochastic programs. SIAM J. Optim. 18 (2007), 961–979 MR 2345979 | Zbl 1211.90151
[30] Ruszczyński A., Shapiro A., eds.: Handbook on Stochastic Programming. Handbooks in Operations Research & Management Science 10, Elsevier, Amsterdam 2002
[31] Ruszczyński A., Shapiro A.: Optimization of risk measures. Chapter 4 in: Probabilistic and Randomized Methods for Design under Uncertainty (G. Calafiore and F. Dabbene, eds.), Springer, London 2006, pp. 121–157 Zbl 1181.90281
Partner of
EuDML logo