[2] Chovanec F.:
States and observables on MV-algebras. Tatra Mt. Math. Publ. 3 (1993), 55–65
MR 1278519 |
Zbl 0799.03074
[3] Cignoli R., D’Ottaviano I. M. L., Mundici D.:
Algebraic Foundations of Many-valued Reasoning. Kluwer Academic Publishers, Dordrecht 2000
MR 1786097 |
Zbl 0937.06009
[4] Nola A. Di, Dvurečenskij A., Hyčko, M., Manara C.:
Entropy of effect algebras with the Riesz decomposition property II. MV-algebras. Kybernetika 41 (2005), 161–175
MR 2138766
[6] Dvurečenskij A.: Perfect effect algebras are categorically equivalent with Abelian interpolation po-groups, submitte.
[7] Dvurečenskij A., Pulmannová S.:
New Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 2000
MR 1861369
[9] Goodearl K. R.:
Partially Ordered Abelian Groups with Interpolation. (Math. Surveys and Monographs No. 20.) Amer. Math. Society, Providence, RI 1986
MR 0845783 |
Zbl 0589.06008
[11] Kôpka F., Chovanec F.:
D-posets. Math. Slovaca 44 (1994), 21–34
MR 1290269
[12] Maličký P., Riečan B.:
On the entropy of dynamical systems. In: Proc. Conference Ergodic Theory and Related Topics II, Georgenthal 1986, Teubner, Leipzig 1987, pp. 135–138
MR 0931138
[15] Petrovičová J.:
On the entropy of dynamical systems in product MV algebras. Fuzzy Sets and Systems 121 (2001), 347–351
Zbl 0983.37007
[17] Riečan B.: Kolmogorov-Sinaj entropy on MV-algebras, submitte.
[18] Riečan B., Mundici D.:
Probability on MV-algebras. In: Handbook of Measure Theory (E. Pap, ed.), Elsevier Science, Amsterdam 2002, Vol. II, pp. 869–909
MR 1954631 |
Zbl 1017.28002
[19] Riečan B., Neubrunn T.:
Integral, Measure and Ordering. Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava, 1997
MR 1489521 |
Zbl 0916.28001
[20] Ravindran K.:
On a Structure Theory of Effect Algebras. Ph.D. Thesis, Kansas State University, Manhattan 1996
MR 2694228