Previous |  Up |  Next

Article

Keywords:
effect algebra; Riesz decomposition property; MV-algebra; state; entropy
Summary:
We define the entropy, lower and upper entropy, and the conditional entropy of a dynamical system consisting of an effect algebra with the Riesz decomposition property, a state, and a transformation. Such effect algebras allow many refinements of two partitions. We present the basic properties of these entropies and these notions are illustrated by many examples. Entropy on MV-algebras is postponed to Part II.
References:
[1] Chang C. C.: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490 DOI 10.1090/S0002-9947-1958-0094302-9 | MR 0094302 | Zbl 0084.00704
[2] Chovanec F.: States and observables on MV-algebras. Tatra Mt. Math. Publ. 3 (1993), 55–65 MR 1278519 | Zbl 0799.03074
[3] Cignoli R., D’Ottaviano I. M. L., Mundici D.: Algebraic Foundations of Many-valued Reasoning. Kluwer Academic Publishers, Dordrecht 2000 MR 1786097 | Zbl 0937.06009
[4] Nola A. Di, Dvurečenskij A., Hyčko, M., Manara C.: Entropy of effect algebras with the Riesz decomposition property II. MV-algebras. Kybernetika 41 (2005), 161–175 MR 2138766
[5] Dvurečenskij A.: Central elements and Cantor–Bernstein’s theorem for pseudo-effect algebras. J. Austral. Math. Soc. 74 (2003), 121–143 DOI 10.1017/S1446788700003177 | MR 1948263 | Zbl 1033.03036
[6] Dvurečenskij A.: Perfect effect algebras are categorically equivalent with Abelian interpolation po-groups, submitte.
[7] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 2000 MR 1861369
[8] Foulis D. J., Bennett M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325–1346 DOI 10.1007/BF02283036 | MR 1304942
[9] Goodearl K. R.: Partially Ordered Abelian Groups with Interpolation. (Math. Surveys and Monographs No. 20.) Amer. Math. Society, Providence, RI 1986 MR 0845783 | Zbl 0589.06008
[10] Greechie R. J.: Orthomodular lattices admitting no states. J. Comb. Theory 10 (1971), 119–132 DOI 10.1016/0097-3165(71)90015-X | MR 0274355 | Zbl 0219.06007
[11] Kôpka F., Chovanec F.: D-posets. Math. Slovaca 44 (1994), 21–34 MR 1290269
[12] Maličký P., Riečan B.: On the entropy of dynamical systems. In: Proc. Conference Ergodic Theory and Related Topics II, Georgenthal 1986, Teubner, Leipzig 1987, pp. 135–138 MR 0931138
[13] Mundici D.: Interpretation of AF $C^*$-algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15–63 DOI 10.1016/0022-1236(86)90015-7 | MR 0819173 | Zbl 0597.46059
[14] Mundici D.: Averaging the truth-value in Łukasiewicz logic. Studia Logica 55 (1995), 113–127 DOI 10.1007/BF01053035 | MR 1348840 | Zbl 0836.03016
[15] Petrovičová J.: On the entropy of dynamical systems in product MV algebras. Fuzzy Sets and Systems 121 (2001), 347–351 Zbl 0983.37007
[16] Petrovičová J.: On the entropy of partitions in product MV algebras. Soft Computing 4 (2000), 41–44 DOI 10.1007/s005000050080 | Zbl 1008.37004
[17] Riečan B.: Kolmogorov-Sinaj entropy on MV-algebras, submitte.
[18] Riečan B., Mundici D.: Probability on MV-algebras. In: Handbook of Measure Theory (E. Pap, ed.), Elsevier Science, Amsterdam 2002, Vol. II, pp. 869–909 MR 1954631 | Zbl 1017.28002
[19] Riečan B., Neubrunn T.: Integral, Measure and Ordering. Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava, 1997 MR 1489521 | Zbl 0916.28001
[20] Ravindran K.: On a Structure Theory of Effect Algebras. Ph.D. Thesis, Kansas State University, Manhattan 1996 MR 2694228
Partner of
EuDML logo