Previous |  Up |  Next

Article

Keywords:
effect algebra; generalized effect algebra; generalized MV- effect algebra; prelattice and homogeneous generalized effect algebra
Summary:
We study unbounded versions of effect algebras. We show a necessary and sufficient condition, when lattice operations of a such generalized effect algebra $P$ are inherited under its embeding as a proper ideal with a special property and closed under the effect sum into an effect algebra. Further we introduce conditions for a generalized homogeneous, prelattice or MV-effect effect algebras. We prove that every prelattice generalized effect algebra $P$ is a union of generalized MV-effect algebras and every generalized homogeneous effect algebra is a union of its maximal sub-generalized effect algebras with hereditary Riesz decomposition property (blocks). Properties of sharp elements, the center and center of compatibility of $P$ are shown. We prove that on every generalized MV-effect algebra there is a bounded orthogonally additive measure.
References:
[1] Chang C. C.: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490 DOI 10.1090/S0002-9947-1958-0094302-9 | MR 0094302 | Zbl 0084.00704
[2] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht – Boston – London and Ister Science, Bratislava 2000 MR 1861369
[3] Foulis D., Bennett M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325–1346 DOI 10.1007/BF02283036 | MR 1304942
[4] Gudder S. P.: D-algebras. Found. Phys. 26 (1996), 813–822 MR 1407184
[5] Hájek P.: Mathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht 1998 MR 1900263
[6] Hedlíková J., Pulmannová S.: Generalized difference posets and orthoalgebras. Acta Math. Univ. Comenianae 45 (1996), 247–279 MR 1451174 | Zbl 0922.06002
[7] Janowitz M. F.: A note on generalized orthomodular lattices. J. Natur. Sci. Math. 8 (1968), 89–94 MR 0231762 | Zbl 0169.02104
[8] Jenča G.: Blocks of homogeneous effect algebras. Bull. Austral. Math. Soc. 64 (2001), 81–98 DOI 10.1017/S0004972700019705 | MR 1848081 | Zbl 0985.03063
[9] Jenča G., Riečanová Z.: On sharp elements in lattice ordered effect algebras. BUSEFAL 80 (1999), 24–29
[10] Kalmbach G.: Orthomodular Lattices. Academic Press, London – New York 1983 MR 0716496 | Zbl 0554.06009
[11] Kôpka F.: Compatibility in D-posets. Internat. J. Theor. Phys. 34 (1995), 1525–1531 DOI 10.1007/BF00676263 | MR 1353696 | Zbl 0851.03020
[12] Kôpka F., Chovanec F.: Boolean D-posets. Tatra Mt. Math. Publ. 10 (1997), 183–197 MR 1469294 | Zbl 0915.03052
[14] Riečanová Z.: Subalgebras, intervals and central elements of generalized effect algebras. Internat. J. Theor. Phys. 38 (1999), 3209–3220 DOI 10.1023/A:1026682215765 | MR 1764459 | Zbl 0963.03087
[15] Riečanová Z.: Compatibilty and central elements in effect algebras. Tatra Mt. Math. Publ. 16 (1999), 151–158
[16] Riečanová Z.: Generalization of blocks for $D$-lattices and lattice ordered effect algebras. Internat. J. Theor. Phys. 39 (2000), 231–237 DOI 10.1023/A:1003619806024 | MR 1762594 | Zbl 0968.81003
[17] Riečanová Z.: Orthogonal sets in effect algebras. Demonstratio Mathematica 34 (2001), 525–532 MR 1853730
[18] Wilce A.: Perspectivity and congruence in partial Abelian semigroups. Math. Slovaca 48 (1998), 117–135 MR 1647650 | Zbl 0938.03094
Partner of
EuDML logo