Previous |  Up |  Next

Article

Title: Entropy on effect algebras with the Riesz decomposition property I: Basic properties (English)
Author: Di Nola, Antonio
Author: Dvurečenskij, Anatolij
Author: Hyčko, Marek
Author: Manara, Corrado
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 41
Issue: 2
Year: 2005
Pages: [143]-160
Summary lang: English
.
Category: math
.
Summary: We define the entropy, lower and upper entropy, and the conditional entropy of a dynamical system consisting of an effect algebra with the Riesz decomposition property, a state, and a transformation. Such effect algebras allow many refinements of two partitions. We present the basic properties of these entropies and these notions are illustrated by many examples. Entropy on MV-algebras is postponed to Part II. (English)
Keyword: effect algebra
Keyword: Riesz decomposition property
Keyword: MV-algebra
Keyword: state
Keyword: entropy
MSC: 03B50
MSC: 03G12
MSC: 06D35
MSC: 28A20
MSC: 37B40
idZBL: Zbl 1249.03115
idMR: MR2138765
.
Date available: 2009-09-24T20:07:49Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135647
.
Related article: http://dml.cz/handle/10338.dmlcz/135648
.
Reference: [1] Chang C. C.: Algebraic analysis of many valued logics.Trans. Amer. Math. Soc. 88 (1958), 467–490 Zbl 0084.00704, MR 0094302, 10.1090/S0002-9947-1958-0094302-9
Reference: [2] Chovanec F.: States and observables on MV-algebras.Tatra Mt. Math. Publ. 3 (1993), 55–65 Zbl 0799.03074, MR 1278519
Reference: [3] Cignoli R., D’Ottaviano I. M. L., Mundici D.: Algebraic Foundations of Many-valued Reasoning.Kluwer Academic Publishers, Dordrecht 2000 Zbl 0937.06009, MR 1786097
Reference: [4] Nola A. Di, Dvurečenskij A., Hyčko, M., Manara C.: Entropy of effect algebras with the Riesz decomposition property II.MV-algebras. Kybernetika 41 (2005), 161–175 MR 2138766
Reference: [5] Dvurečenskij A.: Central elements and Cantor–Bernstein’s theorem for pseudo-effect algebras.J. Austral. Math. Soc. 74 (2003), 121–143 Zbl 1033.03036, MR 1948263, 10.1017/S1446788700003177
Reference: [6] Dvurečenskij A.: Perfect effect algebras are categorically equivalent with Abelian interpolation po-groups, submitte.
Reference: [7] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures.Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 2000 MR 1861369
Reference: [8] Foulis D. J., Bennett M. K.: Effect algebras and unsharp quantum logics.Found. Phys. 24 (1994), 1325–1346 MR 1304942, 10.1007/BF02283036
Reference: [9] Goodearl K. R.: Partially Ordered Abelian Groups with Interpolation.(Math. Surveys and Monographs No. 20.) Amer. Math. Society, Providence, RI 1986 Zbl 0589.06008, MR 0845783
Reference: [10] Greechie R. J.: Orthomodular lattices admitting no states.J. Comb. Theory 10 (1971), 119–132 Zbl 0219.06007, MR 0274355, 10.1016/0097-3165(71)90015-X
Reference: [11] Kôpka F., Chovanec F.: D-posets.Math. Slovaca 44 (1994), 21–34 MR 1290269
Reference: [12] Maličký P., Riečan B.: On the entropy of dynamical systems.In: Proc. Conference Ergodic Theory and Related Topics II, Georgenthal 1986, Teubner, Leipzig 1987, pp. 135–138 MR 0931138
Reference: [13] Mundici D.: Interpretation of AF $C^*$-algebras in Łukasiewicz sentential calculus.J. Funct. Anal. 65 (1986), 15–63 Zbl 0597.46059, MR 0819173, 10.1016/0022-1236(86)90015-7
Reference: [14] Mundici D.: Averaging the truth-value in Łukasiewicz logic.Studia Logica 55 (1995), 113–127 Zbl 0836.03016, MR 1348840, 10.1007/BF01053035
Reference: [15] Petrovičová J.: On the entropy of dynamical systems in product MV algebras.Fuzzy Sets and Systems 121 (2001), 347–351 Zbl 0983.37007
Reference: [16] Petrovičová J.: On the entropy of partitions in product MV algebras.Soft Computing 4 (2000), 41–44 Zbl 1008.37004, 10.1007/s005000050080
Reference: [17] Riečan B.: Kolmogorov-Sinaj entropy on MV-algebras, submitte.
Reference: [18] Riečan B., Mundici D.: Probability on MV-algebras.In: Handbook of Measure Theory (E. Pap, ed.), Elsevier Science, Amsterdam 2002, Vol. II, pp. 869–909 Zbl 1017.28002, MR 1954631
Reference: [19] Riečan B., Neubrunn T.: Integral, Measure and Ordering.Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava, 1997 Zbl 0916.28001, MR 1489521
Reference: [20] Ravindran K.: On a Structure Theory of Effect Algebras.Ph.D. Thesis, Kansas State University, Manhattan 1996 MR 2694228
.

Files

Files Size Format View
Kybernetika_41-2005-2_4.pdf 2.458Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo