Previous |  Up |  Next

Article

Keywords:
Markov control processes; density estimation; discounted cost criterion
Summary:
We consider a class of discrete-time Markov control processes with Borel state and action spaces, and $\Re ^{k}$-valued i.i.d. disturbances with unknown density $\rho .$ Supposing possibly unbounded costs, we combine suitable density estimation methods of $\rho $ with approximation procedures of the optimal cost function, to show the existence of a sequence $\lbrace \hat{f}_{t}\rbrace $ of minimizers converging to an optimal stationary policy $f_{\infty }.$
References:
[1] Cavazos-Cadena R.: Nonparametric adaptive control of discounted stochastic systems with compact state space. J. Optim. Theory Appl. 65 (1990), 191–207 DOI 10.1007/BF01102341 | MR 1051545 | Zbl 0699.93053
[2] Devroye L., Gyorfi L.: Nonparametric Density Estimation the $L_{1}$ View. Wiley, New York 1985 MR 0780746
[3] Dynkin E. B., Yushkevich A. A.: Controlled Markov Processes. Springer–Verlag, New York 1979 MR 0554083
[4] Gordienko E. I.: Adaptive strategies for certain classes of controlled Markov processes. Theory Probab. Appl. 29 (1985), 504–518 Zbl 0577.93067
[5] Gordienko E. I., Minjárez-Sosa J. A.: Adaptive control for discrete-time Markov processes with unbounded costs: discounted criterion. Kybernetika 34 (1998), 217–234 MR 1621512
[6] Hasminskii R., Ibragimov I.: On density estimation in the view of Kolmogorov’s ideas in approximation theory. Ann. Statist. 18 (1990), 999–1010 DOI 10.1214/aos/1176347736 | MR 1062695 | Zbl 0705.62039
[7] Hernández-Lerma O.: Adaptive Markov Control Processes. Springer–Verlag, New York 1989 MR 0995463
[8] Hernández-Lerma O., Cavazos-Cadena R.: Density estimation and adaptive control of Markov processes: average and discounted criteria. Acta Appl. Math. 20 (1990), 285–307 DOI 10.1007/BF00049572 | MR 1081591
[9] Hernández-Lerma O., Lasserre J. B.: Discrete-Time Markov Control Processes: Basic Optimality Criteria. Springer–Verlag, New York 1996 MR 1363487 | Zbl 0840.93001
[10] Hernández-Lerma O., Lasserre J. B.: Further Topics on Discrete-Time Markov Control Processes. Springer–Verlag, New York 1999 MR 1697198 | Zbl 0928.93002
[11] Hernández-Lerma O., Marcus S. I.: Adaptive policies for discrete-time stochastic control systems with unknown disturbance distribution. Systems Control Lett. 9 (1987), 307–315 DOI 10.1016/0167-6911(87)90055-7 | MR 0912683 | Zbl 0637.93075
[12] Hilgert N., Minjárez-Sosa J. A.: Adaptive policies for time-varying stochastic systems under discounted criterion. Math. Methods Oper. Res. 54 (2001), 491–505 DOI 10.1007/s001860100170 | MR 1890916 | Zbl 1042.93065
[13] Schäl M.: Conditions for optimality and for the limit of $n$-stage optimal policies to be optimal. Z. Wahrs. Verw. Gerb. 32 (1975), 179–196 DOI 10.1007/BF00532612 | MR 0378841
Partner of
EuDML logo