[2] Cabral I., Silva F. C.:
Unified theorems on completions of matrix pencils. Linear Algebra and its Applications 159 (1991), 43–54
MR 1133334 |
Zbl 0738.15007
[3] Gantmacher F. R.: Matrix Theory. Vol. II. Chelsea, New York 1974
[4] Hautus M. L. J., Heymann M.:
Linear feedback: an algebraic approach. SIAM J. Control Optim. 7 (1978) 50–63
MR 0476024 |
Zbl 0385.93015
[5] Herrera A., Mondié S.: On the complete controllability indices assignment problem. To appear
[8] Kronecker L.: Algebraische reduction der schaaren bilinearer formen. S.-B. Akad. Berlin 1890, pp. 763–776
[9] Kučera V.:
Assigning the invariant factors by feedback. Kybernetika 17 (1981), 2, 118–127
MR 0624204
[10] Loiseau J. J.: Contribution à l’étude des sous–espaces presque invariants. Thèse de Doctorat de l’Université de Nantes, 1986
[12] Loiseau J. J., Mondié S., Zaballa, I., Zagalak P.:
Assigning the Kronecker invariants to a matrix pencil by row or column completions. Linear Algebra Appl. 278 (1998), 327–336
MR 1637316
[14] Mondié S.: Contribución al estudio de modificaciones estructurales de sitemas lineales. Ph.D. Thesis, Dept. Ing. Electrica, CINVESTAV del IPN, México, D.F. 1996
[15] Mondié S., Loiseau J. J.: Structure assignment of state–output systems by choice of the output equation. In: Proc. IFAC Conference on System Structure and Control, Nantes 1995, pp. 172–177
[16] Mondié S., Loiseau J. J.: Simultaneous zeros and controllability indices assignment through nonregular static state feedback. In: Proc. 36th IEEE Conference on Decision and Control, San Diego 1997
[17] Mondié S., Loiseau J. J.: Structure assignment of right invertible implicit systems through nonregular static state feedback. In: Proc. European Control Conference, Brussels 1997
[18] Mondié S., Zagalak, P., Kučera V.:
State feedback in linear control theory. Linear Algebra and its Applications 317 (2000), 177–192
MR 1782208 |
Zbl 0967.93022
[23] Wolovich W. A.:
Multivariable Linear Systems. Springer Verlag, 1974
MR 0359881
[24] Zaballa I.:
Interlacing inequalities and control theory. Linear Algebra Appl. 87 (1987), 113–146
MR 0941293
[25] Zaballa I.:
Feedback invariants of matrix quadruple completions. Linear Algebra Appl. 292 (1999), 73–97
MR 1689305 |
Zbl 0952.93053
[26] Zagalak P., Loiseau J. J.: Invariant Factors Assignment in Linear Systems. In: Proc. International Symposium on Implicit and Nonlinear Systems, The University of Texas, Arlington 1992, pp. 197–204