Previous |  Up |  Next

Article

Keywords:
matrix pencils; the Kronecker invariants; matrix completion; linear systems; state feedback
Summary:
The matrix pencil completion problem introduced in [J. J. Loiseau, S. Mondié, I. Zaballa, and P. Zagalak: Assigning the Kronecker invariants to a matrix pencil by row or column completions. Linear Algebra Appl. 278 (1998)] is reconsidered and the latest results achieved in that field are discussed.
References:
[1] Baragaña I., Zaballa I.: Column completion of a pair of matrices. Linear and Multilinear Algebra 27 (1990), 243–273 DOI 10.1080/03081089008818016 | MR 1065067 | Zbl 0704.15010
[2] Cabral I., Silva F. C.: Unified theorems on completions of matrix pencils. Linear Algebra and its Applications 159 (1991), 43–54 MR 1133334 | Zbl 0738.15007
[3] Gantmacher F. R.: Matrix Theory. Vol. II. Chelsea, New York 1974
[4] Hautus M. L. J., Heymann M.: Linear feedback: an algebraic approach. SIAM J. Control Optim. 7 (1978) 50–63 MR 0476024 | Zbl 0385.93015
[5] Herrera A., Mondié S.: On the complete controllability indices assignment problem. To appear
[6] Heymann M.: Controllability indices and feedback simulation. SIAM J. Control Optim. 14 (1981), 4, 769–789 DOI 10.1137/0314050 | MR 0439296
[7] Kailath T.: Linear Systems. Englewood Cliffs, Prentice–Hall, NJ 1980 MR 0569473 | Zbl 0870.93013
[8] Kronecker L.: Algebraische reduction der schaaren bilinearer formen. S.-B. Akad. Berlin 1890, pp. 763–776
[9] Kučera V.: Assigning the invariant factors by feedback. Kybernetika 17 (1981), 2, 118–127 MR 0624204
[10] Loiseau J. J.: Contribution à l’étude des sous–espaces presque invariants. Thèse de Doctorat de l’Université de Nantes, 1986
[11] Loiseau J. J.: Pole placement and related problems. Kybernetika 28 (1992), 2, 90–100 MR 1169212 | Zbl 0762.93037
[12] Loiseau J. J., Mondié S., Zaballa, I., Zagalak P.: Assigning the Kronecker invariants to a matrix pencil by row or column completions. Linear Algebra Appl. 278 (1998), 327–336 MR 1637316
[13] Loiseau J. J., Zagalak P.: On a special case of model matching. Internat. J. Control 77 (1994), 2, 164–172 DOI 10.1080/00207170310001647678 | MR 2035020
[14] Mondié S.: Contribución al estudio de modificaciones estructurales de sitemas lineales. Ph.D. Thesis, Dept. Ing. Electrica, CINVESTAV del IPN, México, D.F. 1996
[15] Mondié S., Loiseau J. J.: Structure assignment of state–output systems by choice of the output equation. In: Proc. IFAC Conference on System Structure and Control, Nantes 1995, pp. 172–177
[16] Mondié S., Loiseau J. J.: Simultaneous zeros and controllability indices assignment through nonregular static state feedback. In: Proc. 36th IEEE Conference on Decision and Control, San Diego 1997
[17] Mondié S., Loiseau J. J.: Structure assignment of right invertible implicit systems through nonregular static state feedback. In: Proc. European Control Conference, Brussels 1997
[18] Mondié S., Zagalak, P., Kučera V.: State feedback in linear control theory. Linear Algebra and its Applications 317 (2000), 177–192 MR 1782208 | Zbl 0967.93022
[19] Morse A. S.: Structural invariants of linear multivariable systems. SIAM J. Control 11 (1973), 446–465 DOI 10.1137/0311037 | MR 0386762 | Zbl 0259.93011
[20] Rosenbrock H. H.: State Space and Multivariable Theory. Nelson, London 1970 MR 0325201 | Zbl 0246.93010
[21] Sá E. Marques de: Imbedding conditions for $\lambda $-matrices. Linear Algebra Appl. 24 (1979) , 33–50 DOI 10.1016/0024-3795(79)90145-9 | MR 0524824 | Zbl 0395.15009
[22] Thompson R. C.: Interlacing inequalities for invariant factors. Linear Algebra Appl. 24 (1979), 1–31 DOI 10.1016/0024-3795(79)90144-7 | MR 0524823 | Zbl 0395.15003
[23] Wolovich W. A.: Multivariable Linear Systems. Springer Verlag, 1974 MR 0359881
[24] Zaballa I.: Interlacing inequalities and control theory. Linear Algebra Appl. 87 (1987), 113–146 MR 0941293
[25] Zaballa I.: Feedback invariants of matrix quadruple completions. Linear Algebra Appl. 292 (1999), 73–97 MR 1689305 | Zbl 0952.93053
[26] Zagalak P., Loiseau J. J.: Invariant Factors Assignment in Linear Systems. In: Proc. International Symposium on Implicit and Nonlinear Systems, The University of Texas, Arlington 1992, pp. 197–204
Partner of
EuDML logo