Previous |  Up |  Next

Article

Keywords:
geometric ergodicity; non-linear autoregression; least squares extrapolation
Summary:
A non-linear AR(1) process is investigated when the associated white noise is positive. A criterion is derived for the geometric ergodicity of the process. Some explicit formulas are derived for one and two steps ahead extrapolation. Influence of parameter estimation on extrapolation is studied.
References:
[1] Anděl J.: Non-negative autoregressive processes. J. Time Ser. Anal. 10 (1989), 1–11 DOI 10.1111/j.1467-9892.1989.tb00011.x
[2] Anděl J.: On least-squares and naive extrapolations in a non-linear AR(1) process. Test 6 (1997), 91–100 DOI 10.1007/BF02564427 | MR 1466434
[3] Anděl J., Dupač V.: Extrapolations in non-linear autoregressive processes. Kybernetika 35 (1999), 383–389 MR 1704673
[4] Bhansali R. J.: Effects of not knowing the order of an autoregressive process on the mean squared error of prediction – I. J. Amer. Statist. Assoc. 76 (1981), 588–597 MR 0629746 | Zbl 0472.62093
[5] Bhattacharya R., Lee, Ch.: On geometric ergodicity of non-linear autoregressive models. Statist. Probab. Lett. 22 (1995), 311–315 DOI 10.1016/0167-7152(94)00082-J | MR 1333189
[6] Cline D. B. H., Pu H.: Verifying irreducibility and continuity of a non-linear time series. Statist. Probab. Lett. 40 (1998), 139–148 DOI 10.1016/S0167-7152(98)00081-9 | MR 1650873
[7] Datta S., Mathew, G., McCormick W. P.: Nonlinear autoregression with positive innovations. Austral. & New Zealand J. Statist. 40 (1998), 229–239 DOI 10.1111/1467-842X.00026 | MR 1631108 | Zbl 0923.62092
[8] Fuller W. A., Hasza D. P.: Predictors for the first-order autoregressive process. J. Econometrics 13 (1980), 139–157 DOI 10.1016/0304-4076(80)90012-3 | MR 0575084 | Zbl 0521.62078
[9] Lee O.: On probabilistic properties of non-linear ARMA($p,q$) models. Statist. Probab. Lett. 46 (2000), 121–131 DOI 10.1016/S0167-7152(99)00096-6 | MR 1748866
[10] Moeanaddin R., Tong H.: Numerical evaluation of distributions in non-linear autoregression. J. Time Ser. Anal. 11 (1990), 33–48 DOI 10.1111/j.1467-9892.1990.tb00040.x | MR 1046979
[11] Tjøstheim D.: Non-linear time series and Markov chains. Adv. in Appl. Probab. 22 (1990), 587–611 DOI 10.2307/1427459
[12] Tong H.: Non-linear Time Series. Clarendon Press, Oxford 1990 Zbl 0835.62076
Partner of
EuDML logo