[2] Alvarez-Ramirez J., Puebla, H., Cervantes I.:
Stability of observer-based chaotic communications for a class of Lur’e systems. Internat. J. Bifur. Chaos 7 (2002), 1605–1618
DOI 10.1142/S0218127402005352
[4] Čelikovský S., Vaněček A.: Bilinear systems and chaos. Kybernetika 30 (1994), 403–424
[6] Čelikovský S., Chen G.: Synchronization of a class of chaotic systems via a nonlinear observer approach. In: Proc. 41st IEEE Conference on Decision and Control, Las Vegas 2002, pp. 3895–3900
[7] Čelikovský S., Chen G.: Hyperbolic-type generalized Lorenz system and its canonical form. In: Proc. 15th Triennial World Congress of IFAC, Barcelona 2002, CD ROM
[8] Čelikovský S., Ruiz-Léon J. J., Sapiens A. J., Torres-Muñoz J. A.:
Output feedback problems for a class of nonlinear systems. Kybernetika 39 (2003), 389–414
MR 2024522
[9] Chen G., Dong X.:
From Chaos to Order: Methodologies, Perspectives, and Applications. World Scientific, Singapore 1998
MR 1642791 |
Zbl 0908.93005
[12] Fradkov A. L., Nijmeijer, H., Pogromsky A. Yu.:
Adaptive observer based synhronization. In: Controlling Chaos and Bifurcations in Engineering Systems (G. Chen, ed.), CRC Press, Boca Raton 1999, pp. 417–435
MR 1756071
[15] Krener A. J.:
Nonlinear stabilizability and detectability. In: Systems and Networks: Mathematical Theory and Applications, Vol. I (U. Helmke, R. Mennicken, and J. Sauer, eds.), Akademie Verlag, Berlin 199x, pp. 231–250
MR 1288114
[16] Krener A. J., Isidori A.:
Linearization by output injection and nonlinear observers. Systems Control Lett. 3 (1983), 47–52
MR 0713426 |
Zbl 0524.93030
[18] Lian J., Liu P.:
Synchronization with message embedded for generalized Lorenz chaotic circuits and its error analysis. IEEE Trans. Circuits and Systems 47 (2000), 1418–1424
DOI 10.1109/81.883341 |
MR 1803664 |
Zbl 1011.94033
[20] Marino P., Tomei P.:
Nonlinear Control Design: Geometric, Adaptive and Robust. Prentice–Hall, London 1991
Zbl 0833.93003
[21] Nijmeijer H., Shaft A. J. van der:
Nonlinear Dynamical Control Systems. Springer–Verlag, New York 1990
MR 1047663
[30] Vaněček A., Čelikovský S.:
Control Systems: From Linear Analysis to Synthesis of Chaos. Prentice–Hall, London 1996
Zbl 0874.93006
[31] Wang X.:
Chen’s attractor – a new chaotic attractor (in Chinese). Control Theory Appl. 16 (1999), 779
MR 1741142
[32] Wiggins S.:
Global Bifurcation and Chaos: Analytical Methods. Springer–Verlag, New York 1988
MR 0956468
[33] Zhong G.-Q., Tang K. S.:
Circuit implementaion and synchronization of Chen’s attractor. Internat. J. Bifur. Chaos 12 (2002), 1423–1427
DOI 10.1142/S0218127402005224