[1] Bamieh B. A., Pearson J. B.:
A general framework for linear periodic systems with applications to ${\mathcal H}^\infty $ sampled–data control. IEEE Trans. Automat. Control 37 (1992), 418–435
DOI 10.1109/9.126576 |
MR 1153103
[2] Boyd, S .P., Balakrishnan V., Kabamba P.:
A bisection method for computing the ${\mathcal H}^\infty $ norm of a transfer matrix and related problems. Math. Control Signals Systems 2 (1989), 207–219
DOI 10.1007/BF02551385 |
MR 0997214
[4] Cantoni M. W., Glover K.: A design framework for continuous–time systems under sampled–data control. In: Proceedings of the 35th Conference on Decision and Control, Kobe 1996, pp. 458–463
[5] Chen T., Francis B.:
${\mathcal H}^2$-optimal Sampled–Data Control. Technical Report No. 9001, Dept. Elect. Eng., Univ. Toronto, 1990
MR 1097092
[6] Chen T., Francis B.:
Optimal Sampled–Data Control Systems. Springer–Verlag, London – New York 1995
MR 1410060 |
Zbl 0876.93002
[8] Desoer C. A., Vidyasagar M.:
Feedback Systems: Input–Output Properties. Academic Press, NY 1975
MR 0490289 |
Zbl 1153.93015
[10] Flamm D. S., Mitter S. K.:
Approximation of ideal compensators for delay systems. In: Linear Circuits, Systems and Signal Processing: Theory and Applications (C. I. Byrnes, C. F. Martin and R. E. Saeks, eds.), Elsevier Science Publishers B. V., 1988, pp. 517–524
MR 1031070 |
Zbl 0675.93027
[11] Foias C., Francis B., Helton J. W., Kwakernaak H., Pearson J. B.: ${\mathcal H}^\infty $-Control Theory. (Lecture Notes in Mathematics 1496.) Springer-Verlag, Berlin 1991
[12] Foias C., Özbay H., Tannenbaum A.:
Robust Control of Infinite Dimensional Systems. (Lecture Notes in Control and Information Sciences.) Springer–Verlag, Berlin 1996
MR 1369772 |
Zbl 0839.93003
[13] Francis B. A.:
A Course in Control Theory. Springer-Verlag, Berlin 1987
MR 0932459
[15] Gibson J. S., Rosen I. G.:
Numerical approximation for the infinite–dimensional discrete–time optimal linear–quadratic regulator problem. SIAM J. Control Optim. 26 (1988), 2, 428–451
DOI 10.1137/0326025 |
MR 0929811 |
Zbl 0644.93013
[17] Glover K.:
All optimal Hankel–norm approximations of linear multivariable systems and their ${\mathcal L}^\infty $-error bounds. Internat. J. Control 39 (1984), 6, 1115–1193
DOI 10.1080/00207178408933239 |
MR 0748558
[18] Glover K., Curtain R. F., Partington J. R.:
Realisation and approximation of linear infinite–dimensional systems with error bounds. SIAM J. Control Optim. 26 (1988), 4, 863–898
DOI 10.1137/0326049 |
MR 0948650 |
Zbl 0654.93011
[19] Glover K., Lam J., Partington J. R.:
Rational approximation of a class of infinite–dimensional systems. I: singular values of Hankel operators. Math. Control Signals Systems 4 (1990), 325–344
DOI 10.1007/BF02551374 |
MR 1066376 |
Zbl 0727.41020
[20] Glover K., Lam J., Partington J. R.:
Rational approximation of a class of infinite–dimensional systems. II: optimal convergence rates of ${\mathcal L}^\infty $ approximants. Math. Control Signals Systems 4 (1991), 233–246
DOI 10.1007/BF02551279 |
MR 1107236 |
Zbl 0733.41023
[22] Ichikawa A.: The semigroup approach to ${\mathcal H}^2$ and ${\mathcal H}^\infty $-control for sampled–data systems with first–order hold. In: Proceedings of the 35th Conference on Decision and Control, Kobe 1996, pp. 452–457
[25] Kamen E. W., Khargonekar P. P., Tannenbaum A.:
Stabilization of time delay systems with finite–dimensional compensators. IEEE Trans. Automat. Control 30 (1985), 75–78
DOI 10.1109/TAC.1985.1103789 |
MR 0777079
[26] Lenz K., Ozbay H., Tannenbaum A., Turi J., Morton B.:
Robust control design for a flexible beam using a distributed parameter ${\mathcal H}^\infty $ method. In: CDC, Tampa 1989
MR 1039105
[27] Logemann H., Townley S.: Adaptive low–gain sampled–data control of DPS. In: Proceedings of the 34th Conference on Decision and Control, New Orleans 1995, pp, 2946–2947
[29] McFarlane D. C., Glover K.:
Robust Controller Design Using Normalized Coprime Factor Plant Descriptions. Springer–Verlag, Berlin 1990
MR 1029524 |
Zbl 0688.93044
[30] Rodriguez A. A., Dahleh M. A.: Weighted ${\mathcal H}^\infty $ optimization for stable infinite–dimensional systems using finite–dimensional techniques. In: Proceedings of the 29th IEEE CDC, Honolulu 1990, pp. 1814–1820
[32] Rosen I. G.:
Optimal discrete–time LQR problems for parabolic systems with unbounded input – approximation and convergence. Control Theory Adv. Tech. 5 (1989), 227–300
MR 1020634
[33] Rosen I. G., Wang C.:
On the continuous dependence with respect to sampling of the linear quadratic regulator problem for distributed parameter systems. SIAM J. Control Optim. 30 (1992), 4, 942–974
DOI 10.1137/0330052 |
MR 1167820 |
Zbl 0765.49021
[35] Royden H. L.:
Real Analysis. MacMillan Publishing Co, Inc, 1968
MR 0151555
[36] Sågfors M. F., Toivonen H. T.: The sampled–data ${\mathcal H}^\infty $ problem: The equivalence of discretization–based methods and a Riccati equation solution. In: Proceedings of the 35th Conference on Decision and Control, Kobe 1996, pp. 428–433
[37] Smith M.:
Well–posedness of ${\mathcal H}^\infty $ optimal control problems. SIAM J. Control Optim. 28 (1990), 342–358
DOI 10.1137/0328018 |
MR 1040463
[38] Sun W., Nagpal K. M., Khargonekar P. P.:
${\mathcal H}^\infty $ control and filtering for sampled–data systems. IEEE Trans. Automat. Control 38 (1993), 1162–1175
DOI 10.1109/9.233150 |
MR 1235247
[39] Sz.-Nagy B., Foiaş C.:
Harmonic Analysis of Operators on Hilbert Space. North–Holland, Amsterdam 1970
MR 0275190 |
Zbl 1234.47001
[42] Vidyasagar M.: Control Systems Synthesis: A Factorization Approach. MIT Press, Cambrdige MA 1985
[43] Yamamoto Y.:
A function space approach to sampled–data control systems and tracking problem. IEEE Trans. Automat. Control 39 (1994), 703–713
DOI 10.1109/9.286247 |
MR 1276768