Previous |  Up |  Next

Article

Keywords:
state-space approach; full state feedback; $\ell^1$ norm; multirate system; near-optimal performance; memoryless nonlinear controller; viability theory
Summary:
This paper considers the minimization of the $\ell ^\infty $-induced norm of the closed loop in linear multirate systems when full state information is available for feedback. A state-space approach is taken and concepts of viability theory and controlled invariance are utilized. The essential idea is to construct a set such that the state may be confined to that set and that such a confinement guarantees that the output satisfies the desired output norm conditions. Once such a set is computed, it is shown that a memoryless nonlinear controller results, which achieves near-optimal performance. The construction involves the solution of several finite linear programs and generalizes to the multirate case earlier work on linear time-invariant (LTI) systems.
References:
[1] Aubin J. P.: Viability Theory. Birkhäuser, Boston 1991 MR 1134779
[2] Aubin J. P., Cellina A.: Differential Inclusions. Springer–Verlag, New York 1984 MR 0755330 | Zbl 0538.34007
[3] Dahleh M. A., Voulgaris P. G., Valavani L. S.: Optimal and robust controllers for periodic and multirate systems. IEEE Trans. Automat. Control AC–37 (1992), 1, 90–99 DOI 10.1109/9.109641 | MR 1139618 | Zbl 0747.93028
[4] Diaz–Bobillo I. J., Dahleh M. A.: State feedback $\ell ^1$-optimal controllers can be dynamic. Systems Control Lett. 19 (1992), 2, 245–252 MR 1178920
[5] Diaz–Bobillo I. J., Dahleh M. A.: Minimization of the maximum peak-topeak gain: the general multiblock problem. IEEE Trans. Automat. Control 38 (1993), 10, 1459–1482 DOI 10.1109/9.241561 | MR 1242894
[6] Frankowska H., Quincampoix M.: Viability kernels of differential inclusions with constraints: Algorithm and applications. J. Math. Systems, Estimation, and Control 1 (1991), 3, 371–388 MR 1151310
[7] Meyer D. G.: A parametrization of stabilizing controllers for multirate sampled–data systems. IEEE Trans. Automat. Control 5 (1990), 2, 233–236 DOI 10.1109/9.45189 | MR 1038429 | Zbl 0705.93031
[8] Meyer D. G.: A new class of shift–varrying operators, their shift–invariant equivalents, and multirate digital systems. IEEE Trans. Automat. Control 35 (1990), 429–433 DOI 10.1109/9.52295 | MR 1047995
[9] Meyer D. G.: Controller parametrization for time–varying multirate plants. IEEE Trans. Automat. Control 35 (1990), 11, 1259–1262 DOI 10.1109/9.59815 | MR 1074895
[10] Quincampoix M.: An algorithm for invariance kernels of differential inclusions. In: Set–Valued Analysis and Differential Inclusions (A. B. Kurzhanski and V. M. Veliov, eds.). Birkhäuser, Boston 1993, pp. 171–183 MR 1269813 | Zbl 0794.49005
[11] Quincampoix M., Saint–Pierre P.: An algorithm for viability kernels in Holderian case: Approximation by discrete dynamical systems. J. Math. Systems, Estimation, and Control 5 (1995), 1, 1–13 MR 1646282
[12] Shamma J. S.: Nonlinear state feedback for $\ell ^1$ optimal contro. Systems Control Lett. 21 (1993), 265–270 DOI 10.1016/0167-6911(93)90067-G | MR 1241404 | Zbl 0798.93030
[13] Shamma J. S.: Optimization of the $\ell ^\infty $-induced norm under full state feedback. To appear. Summary in: Proceedings of the 33rd IEEE Conference on Decision and Control, 1994
[14] Shamma J. S., Tu K.–Y.: Set–valued observers and optimal disturbance rejection. To appear MR 1669978 | Zbl 0958.93013
[15] Stoorvogel A. A.: Nonlinear ${\mathcal L}_1$ optimal controllers for linear systems. IEEE Trans. Automat. Control 40 (1995), 4, 694–696 DOI 10.1109/9.376108 | MR 1324862
Partner of
EuDML logo