[1] Aubin J. P.:
Viability Theory. Birkhäuser, Boston 1991
MR 1134779
[3] Dahleh M. A., Voulgaris P. G., Valavani L. S.:
Optimal and robust controllers for periodic and multirate systems. IEEE Trans. Automat. Control AC–37 (1992), 1, 90–99
DOI 10.1109/9.109641 |
MR 1139618 |
Zbl 0747.93028
[4] Diaz–Bobillo I. J., Dahleh M. A.:
State feedback $\ell ^1$-optimal controllers can be dynamic. Systems Control Lett. 19 (1992), 2, 245–252
MR 1178920
[5] Diaz–Bobillo I. J., Dahleh M. A.:
Minimization of the maximum peak-topeak gain: the general multiblock problem. IEEE Trans. Automat. Control 38 (1993), 10, 1459–1482
DOI 10.1109/9.241561 |
MR 1242894
[6] Frankowska H., Quincampoix M.:
Viability kernels of differential inclusions with constraints: Algorithm and applications. J. Math. Systems, Estimation, and Control 1 (1991), 3, 371–388
MR 1151310
[8] Meyer D. G.:
A new class of shift–varrying operators, their shift–invariant equivalents, and multirate digital systems. IEEE Trans. Automat. Control 35 (1990), 429–433
DOI 10.1109/9.52295 |
MR 1047995
[9] Meyer D. G.:
Controller parametrization for time–varying multirate plants. IEEE Trans. Automat. Control 35 (1990), 11, 1259–1262
DOI 10.1109/9.59815 |
MR 1074895
[10] Quincampoix M.:
An algorithm for invariance kernels of differential inclusions. In: Set–Valued Analysis and Differential Inclusions (A. B. Kurzhanski and V. M. Veliov, eds.). Birkhäuser, Boston 1993, pp. 171–183
MR 1269813 |
Zbl 0794.49005
[11] Quincampoix M., Saint–Pierre P.:
An algorithm for viability kernels in Holderian case: Approximation by discrete dynamical systems. J. Math. Systems, Estimation, and Control 5 (1995), 1, 1–13
MR 1646282
[13] Shamma J. S.: Optimization of the $\ell ^\infty $-induced norm under full state feedback. To appear. Summary in: Proceedings of the 33rd IEEE Conference on Decision and Control, 1994
[14] Shamma J. S., Tu K.–Y.:
Set–valued observers and optimal disturbance rejection. To appear
MR 1669978 |
Zbl 0958.93013
[15] Stoorvogel A. A.:
Nonlinear ${\mathcal L}_1$ optimal controllers for linear systems. IEEE Trans. Automat. Control 40 (1995), 4, 694–696
DOI 10.1109/9.376108 |
MR 1324862