[2] Butnariu D., Klement E. P.:
Triangular Norm–Based Measures and Games with Fuzzy Coalitions. Kluwer, Dordrecht 1993
MR 2867321 |
Zbl 0804.90145
[3] Lucia P. de, Pták P.:
Quantum probability spaces that are nearly classical. Bull. Polish Acad. Sci. Math. 40 (1992), 163–173
MR 1401868 |
Zbl 0765.60001
[8] Kläy M. P., Foulis D. J.:
Maximum likelihood estimation on generalized sample spaces: an alternative resolution of Simpson’s paradox. Found. Phys. 20 (1990), 777–799
DOI 10.1007/BF01889691 |
MR 1008686
[9] Klement E. P., Mesiar R., Navara M.: Extensions of Boolean functions to $T$-tribes of fuzzy sets. BUSEFAL 63 (1995), 16–21
[11] Majerník V., Pulmannová S.:
Bell inequalities on quantum logics. J. Math. Phys. 33 (1992), 2173–2178
DOI 10.1063/1.529638
[13] Mesiar R.:
On the structure of $T_s$-tribes. Tatra Mountains Math. Publ. 3 (1993), 167–172
MR 1278531
[17] Navara M.:
A characterization of triangular norm based tribes. Tatra Mountains Math. Publ. 3 (1993), 161–166
MR 1278530 |
Zbl 0799.28013
[18] Navara M.:
Algebraic approach to fuzzy quantum spaces. Demonstratio Math. 27 (1994), 589–600
MR 1319404 |
Zbl 0830.03032
[19] Navara M.:
On generating finite orthomodular sublattices. Tatra Mountains Math. Publ. 10 (1997), 109–117
MR 1469286 |
Zbl 0915.06004
[21] Navara M., Pták P.:
Uncertainty and dependence in classical and quantum logic – the role of triangular norms. To appear
Zbl 0988.03096
[23] Pták P., Pulmannová S.:
Orthomodular Structures as Quantum Logics. Kluwer Academic Publishers, Dordrecht – Boston – London 1991
MR 1176314
[24] Pták P., Pulmannová S.:
A measure–theoretic characterization of Boolean algebras among orthomodular lattices. Comment. Math. Univ. Carolin. 35 (1994), 205–208
MR 1292596 |
Zbl 0805.06010