Previous |  Up |  Next

Article

Keywords:
degree of probabilistic dependence; $t$-norm; fuzzy logic
Summary:
A degree of probabilistic dependence is introduced in the classical logic using the Frank family of $t$-norms known from fuzzy logics. In the quantum logic a degree of quantum dependence is added corresponding to the level of noncompatibility. Further, in the case of the fuzzy logic with $P$-states, (resp. $T$-states) the consideration turned out to be fully analogous to (resp. considerably different from) the classical situation.
References:
[1] Beran L.: Orthomodular Lattices. Algebraic Approach. Academia, Praha 1984 MR 0785005 | Zbl 0677.06003
[2] Butnariu D., Klement E. P.: Triangular Norm–Based Measures and Games with Fuzzy Coalitions. Kluwer, Dordrecht 1993 MR 2867321 | Zbl 0804.90145
[3] Lucia P. de, Pták P.: Quantum probability spaces that are nearly classical. Bull. Polish Acad. Sci. Math. 40 (1992), 163–173 MR 1401868 | Zbl 0765.60001
[4] Dubois D.: Generalized probabilistic independence and its implications for utility. Oper. Res. Lett. 5 (1986), 255–260 DOI 10.1016/0167-6377(86)90017-9 | MR 0874728 | Zbl 0611.90013
[5] Dvurečenskij A., Riečan B.: On joint distribution of observables for F-quantum spaces. Fuzzy Sets and Systems 39 (1991), 65–73 DOI 10.1016/0165-0114(91)90066-Y | MR 1089012
[6] Frank M. J.: On the simultaneous associativity of $F(x,y)$ and $x+y-F(x,y)$. Aequationes Math. 19 (1979), 194–226 DOI 10.1007/BF02189866 | MR 0556722 | Zbl 0444.39003
[7] Kalmbach G.: Orthomodular Lattices. Academic Press, London 1983 MR 0716496 | Zbl 0554.06009
[8] Kläy M. P., Foulis D. J.: Maximum likelihood estimation on generalized sample spaces: an alternative resolution of Simpson’s paradox. Found. Phys. 20 (1990), 777–799 DOI 10.1007/BF01889691 | MR 1008686
[9] Klement E. P., Mesiar R., Navara M.: Extensions of Boolean functions to $T$-tribes of fuzzy sets. BUSEFAL 63 (1995), 16–21
[10] Klement E. P., Navara M.: A characterization of tribes with respect to the Łukasiewicz $t$-norm. Czechoslovak Math. J. 47 (122) (1997), 689–700 DOI 10.1023/A:1022822719086 | MR 1479313 | Zbl 0902.28015
[11] Majerník V., Pulmannová S.: Bell inequalities on quantum logics. J. Math. Phys. 33 (1992), 2173–2178 DOI 10.1063/1.529638
[12] Mesiar R.: Fundamental triangular norm based tribes and measures. J. Math. Anal. Appl. 177 (1993), 633–640 DOI 10.1006/jmaa.1993.1283 | MR 1231507 | Zbl 0816.28014
[13] Mesiar R.: On the structure of $T_s$-tribes. Tatra Mountains Math. Publ. 3 (1993), 167–172 MR 1278531
[14] Mesiar R.: Do fuzzy quantum structures exist? Internat. J. Theoret. Physics 34 (1995), 1609–1614 DOI 10.1007/BF00676273 | MR 1353705
[15] Mesiar R., Navara M.: $T_s$-tribes and $T_s$-measures. J. Math. Anal. Appl. 201 (1996), 91–102 DOI 10.1006/jmaa.1996.0243 | MR 1397888
[16] Mundici D.: Interpretation of AF C$^*$-algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15–63 DOI 10.1016/0022-1236(86)90015-7 | MR 0819173 | Zbl 0597.46059
[17] Navara M.: A characterization of triangular norm based tribes. Tatra Mountains Math. Publ. 3 (1993), 161–166 MR 1278530 | Zbl 0799.28013
[18] Navara M.: Algebraic approach to fuzzy quantum spaces. Demonstratio Math. 27 (1994), 589–600 MR 1319404 | Zbl 0830.03032
[19] Navara M.: On generating finite orthomodular sublattices. Tatra Mountains Math. Publ. 10 (1997), 109–117 MR 1469286 | Zbl 0915.06004
[20] Navara M., Pták P.: P-measures on soft fuzzy $\sigma $-algebras. Fuzzy Sets and Systems 56 (1993), 123–126 DOI 10.1016/0165-0114(93)90193-L | MR 1223202 | Zbl 0816.28011
[21] Navara M., Pták P.: Uncertainty and dependence in classical and quantum logic – the role of triangular norms. To appear Zbl 0988.03096
[22] Piasecki K.: Probability of fuzzy events defined as denumerable additivity measure. Fuzzy Sets and Systems 17 (1985), 271–284 DOI 10.1016/0165-0114(85)90093-4 | MR 0819364 | Zbl 0604.60005
[23] Pták P., Pulmannová S.: Orthomodular Structures as Quantum Logics. Kluwer Academic Publishers, Dordrecht – Boston – London 1991 MR 1176314
[24] Pták P., Pulmannová S.: A measure–theoretic characterization of Boolean algebras among orthomodular lattices. Comment. Math. Univ. Carolin. 35 (1994), 205–208 MR 1292596 | Zbl 0805.06010
[25] Pykacz J.: Fuzzy set ideas in quantum logics. Internat. J. Theoret. Phys. 31 (1992), 1765–1781 DOI 10.1007/BF00671785 | MR 1183522 | Zbl 0789.03049
[26] Salvati S.: A characterization of Boolean algebras. Ricerche Mat. 43 (1994), 357–363 MR 1324757 | Zbl 0915.06005
[27] Schweizer B., Sklar A.: Probabilistic Metric Spaces. North–Holland, New York 1983 MR 0790314 | Zbl 0546.60010
Partner of
EuDML logo