[1] Bacchus F.:
Representing and Reasoning with Probabilistic Knowledge. A Logical Approach to Probabilities. MIT Press, Cambridge 1990
MR 1133623
[2] Baroni P., Guida G., Mussi S.: Modeling default reasoning through $A$–uncertainty. In: Proceedings IPMU’ 96, International Conference on Information Processing and Management of Uncertainty in Knowledge–Based Systems, Granada 1996, pp. 1197–1204
[3] Benferhat S., Saffiotti A., Smets P.:
Belief functions and default reasoning. In: Proc. UAI 95 11th Conference on Uncertainty in Artificial Intelligence, Montreal 1995
MR 1785699 |
Zbl 0948.68112
[4] Dubois D., Lang J., Prade H.:
Automated reasoning using possibilistic logic: Semantics, belief revision, and variable certainty weights. IEEE Trans. Knowledge Data Engineering KDE–6 (1994), 1, 64–71
DOI 10.1109/69.273026 |
MR 1281429
[6] Group, Léa Sombé:
Reasoning under incomplete information in artificial intelligence: A comparison of formalisms using a single example. Internat. J. Intelligent Systems 5 (1990), 4, 323–472
DOI 10.1002/int.4550050403 |
MR 1094371
[9] Pearl J.:
Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo 1991
MR 0965765 |
Zbl 0746.68089
[11] Saffiotti A.: Using Dempster–Shafer theory in knowledge representation. In: Uncertainty in Artificial Intelligence 6 (P. P. Bonissone, M. Henrion, L. N. Kanal and J. F. Lemmer, eds.), Elsevier, New York 1991, pp. 417–431
[12] Saffiotti A.:
A belief–function logic In: Proc. AAAI–92 10th National Conference on Artificial Intelligence, San Jose, 1992, pp. 642–647
MR 1203139
[13] Smets P.: The nature of unnormalized beliefs encountered in the transferable belief model. In: Proc. of Uncertainty in AI 92, pp. 292–297
[14] Smets P., Hsia Y. T.: Default reasoning and the transferable belief model. In: Uncertainty in Artificial Intelligence 6 (P. P. Bonissone, M. Henrion, L. N. Kanal and J. F. Lemmer, eds.). Elsevier, New York 1991, pp. 495–504