Previous |  Up |  Next

Article

Keywords:
electricity markets; bidding; noncooperative games; equilibrium constraint; EPEC; optimality condition; co-derivative; random demand
Summary:
Modeling several competitive leaders and followers acting in an electricity market leads to coupled systems of mathematical programs with equilibrium constraints, called equilibrium problems with equilibrium constraints (EPECs). We consider a simplified model for competition in electricity markets under uncertainty of demand in an electricity network as a (stochastic) multi-leader-follower game. First order necessary conditions are developed for the corresponding stochastic EPEC based on a result of Outrata. For applying the general result an explicit representation of the co-derivative of the normal cone mapping to a polyhedron is derived. Then the co-derivative formula is used for verifying constraint qualifications and for identifying $M$-stationary solutions of the stochastic EPEC if the demand is represented by a finite number of scenarios.
References:
[1] B.  Blaesig: Risikomanagement in der Stromerzeugungs- und Handelsplanung. Aachener Beiträge zur Energieversorgung, Band  113. Klinkenberg, Aachen, 2007.
[2] A. L.  Dontchev, R. T.  Rockafellar: Characterizations of strong regularity for variational inequalities over polyhedral convex sets. SIAM J.  Optim. 7 (1996), 1087–1105. DOI 10.1137/S1052623495284029 | MR 1416530
[3] A.  Eichhorn, W.  Römisch: Mean-risk optimization models for electricity portfolio management. Proceedings of the 9th International Conference on Probabilistic Methods Applied to Power Systems (PMAPS 2006), Stockholm, , , 2006.
[4] J. F.  Escobar, A.  Jofre: Oligopolistic competition in electricity spot markets, Dec. 2005. Available at http://ssrn.com/abstract=878762
[5] F.  Facchinei, J.-S.  Pang: Finite-dimensional Variational Inequalities and Complementarity Problems, Vol.  I and II. Springer-Verlag, New York, 2003. MR 1955648
[6] R.  Fletcher, S.  Leyffer, D.  Ralph, and S.  Scholtes: Local convergence of SQP  methods for mathematical programs with equilibrium constraints. SIAM J.  Optim. 17 (2006), 259–286. DOI 10.1137/S1052623402407382 | MR 2219153
[7] R.  Garcia-Bertrand, A. J.  Conejo, and S.  Gabriel: Electricity market near-equilibrium under locational marginal pricing and minimum profit conditions. Eur. J. Oper. Res. 174 (2006), 457–479. DOI 10.1016/j.ejor.2005.03.037
[8] B. F.  Hobbs, J.-S.  Pang: Nash-Cournot equilibria in electric power markets with piecewise linear demand functions and joint constraints. Oper. Res. 55 (2007), 113–127. DOI 10.1287/opre.1060.0342 | MR 2290891
[9] B.  F.  Hobbs, C.  Metzler, and J.-S. Pang: Strategic gaming analysis for electric power networks: An MPEC  approach. IEEE Power Engineering Transactions 15 (2000), 638–645. DOI 10.1109/59.867153
[10] X.  Hu, D.  Ralph: Using EPECs to model bilevel games in restructured electricity markets with locational prices. Optimization Online, 2006 (www.optimization-online.org). MR 2360950
[11] X.  Hu, D.  Ralph, E. K.  Ralph, P.  Bardsley, and M. C. Ferris: Electricity generation with looped transmission networks: Bidding to an ISO. Research Paper No.  2004/16, Judge Institute of Management, Cambridge University, 2004.
[12] M.  Kočvara, J. V.  Outrata: Optimization problems with equilibrium constraints and their numerical solution. Math. Program.  B 101 (2004), 119–149. DOI 10.1007/s10107-004-0539-2 | MR 2085261
[13] S.  Leyffer, T. S.  Munson: Solving multi-leader-follower games. Preprint ANL/MCS-P1243-0405, Argonne National Laboratory, Mathematics and Computer Science Division, April 2005.
[14] Z.-Q.  Luo, J.-S.  Pang, and D.  Ralph: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge, 1997. MR 1419501
[15] B. S.  Mordukhovich: Variational Analysis and Generalized Differentiation. Vol.  1: Basic Theory, Vol.  2: Applications. Springer-Verlag, Berlin, 2006. MR 2191745
[16] B. S.  Mordukhovich, J. V.  Outrata: Coderivative analysis of quasi-variational inequalities with applications to stability and optimization. SIAM J.  Optim. 18 (2007), 389–412. DOI 10.1137/060665609 | MR 2338444
[17] J. V.  Outrata: A note on a class of equilibrium problems with equilibrium constraints. Cybernetica 40 (2004), 585–594. MR 2120998 | Zbl 1249.49017
[18] J. V.  Outrata: On constrained qualifications for mathematical programs with mixed complementarity constraints. Complementarity: Applications, Algorithms and Extensions, M. C.  Ferris et al. (eds.), Kluwer, Dordrecht, 2001, pp. 253–272. MR 1818625
[19] J. V.  Outrata, M.  Kočvara, and J.  Zowe: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer, Dordrecht, 1998.
[20] J.-S.  Pang, M.  Fukushima: Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games. Comput. Manag. Sci. 1 (2005), 21–56. DOI 10.1007/s10287-004-0010-0 | MR 2164953
[21] M. V.  Pereira, S.  Granville, M. H. C.  Fampa, R.  Dix, and L. A.  Barroso: Strategic bidding under uncertainty: A binary expansion approach. IEEE Transactions on Power Systems 20 (2005), 180–188. DOI 10.1109/TPWRS.2004.840397
[22] D.  Ralph, Y.  Smeers: EPECs as models for electricity markets. Power Systems Conference and Exposition (PSCE), Atlanta, 2006, , , .
[23] R. T.  Rockafellar, R. J.-B.  Wets: Variational Analysis. Springer-Verlag, Berlin, 1998. MR 1491362
[24] Stochastic Programming. Handbooks in Operations Research and Management Science, Vol. 10. A.  Ruszczyński, A.  Shapiro (eds.), Elsevier, Amsterdam, 2003. MR 2051791
[25] H.  Scheel, S.  Scholtes: Mathematical programs with equilibrium constraints: Stationarity, optimality and sensitivity. Math. Oper. Res. 25 (2000), 1–22. DOI 10.1287/moor.25.1.1.15213 | MR 1854317
[26] A.  Shapiro: Stochastic programming with equilibrium constraints. J. Optim. Theory Appl. 128 (2006), 221–243. DOI 10.1007/s10957-005-7566-x | MR 2201897 | Zbl 1130.90032
[27] A.  Shapiro, H.  Xu: Stochastic mathematical programs with equilibrium constraints, modeling and sample average approximation. Optimization Online 2005 (www.optimization-online.org). MR 2412074
[28] Y.  Smeers: How well can one measure market power in restructured electricity systems?. CORE Discussion Paper 2005/50 (2005), Center for Operations Research and Econometrics (CORE), Louvain.
Partner of
EuDML logo