[1] B. Blaesig: Risikomanagement in der Stromerzeugungs- und Handelsplanung. Aachener Beiträge zur Energieversorgung, Band 113. Klinkenberg, Aachen, 2007.
[2] A. L. Dontchev, R. T. Rockafellar:
Characterizations of strong regularity for variational inequalities over polyhedral convex sets. SIAM J. Optim. 7 (1996), 1087–1105.
DOI 10.1137/S1052623495284029 |
MR 1416530
[3] A. Eichhorn, W. Römisch: Mean-risk optimization models for electricity portfolio management. Proceedings of the 9th International Conference on Probabilistic Methods Applied to Power Systems (PMAPS 2006), Stockholm, , , 2006.
[5] F. Facchinei, J.-S. Pang:
Finite-dimensional Variational Inequalities and Complementarity Problems, Vol. I and II. Springer-Verlag, New York, 2003.
MR 1955648
[6] R. Fletcher, S. Leyffer, D. Ralph, and S. Scholtes:
Local convergence of SQP methods for mathematical programs with equilibrium constraints. SIAM J. Optim. 17 (2006), 259–286.
DOI 10.1137/S1052623402407382 |
MR 2219153
[7] R. Garcia-Bertrand, A. J. Conejo, and S. Gabriel:
Electricity market near-equilibrium under locational marginal pricing and minimum profit conditions. Eur. J. Oper. Res. 174 (2006), 457–479.
DOI 10.1016/j.ejor.2005.03.037
[8] B. F. Hobbs, J.-S. Pang:
Nash-Cournot equilibria in electric power markets with piecewise linear demand functions and joint constraints. Oper. Res. 55 (2007), 113–127.
DOI 10.1287/opre.1060.0342 |
MR 2290891
[9] B. F. Hobbs, C. Metzler, and J.-S. Pang:
Strategic gaming analysis for electric power networks: An MPEC approach. IEEE Power Engineering Transactions 15 (2000), 638–645.
DOI 10.1109/59.867153
[10] X. Hu, D. Ralph:
Using EPECs to model bilevel games in restructured electricity markets with locational prices. Optimization Online, 2006 (www.optimization-online.org).
MR 2360950
[11] X. Hu, D. Ralph, E. K. Ralph, P. Bardsley, and M. C. Ferris: Electricity generation with looped transmission networks: Bidding to an ISO. Research Paper No. 2004/16, Judge Institute of Management, Cambridge University, 2004.
[13] S. Leyffer, T. S. Munson: Solving multi-leader-follower games. Preprint ANL/MCS-P1243-0405, Argonne National Laboratory, Mathematics and Computer Science Division, April 2005.
[14] Z.-Q. Luo, J.-S. Pang, and D. Ralph:
Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge, 1997.
MR 1419501
[15] B. S. Mordukhovich:
Variational Analysis and Generalized Differentiation. Vol. 1: Basic Theory, Vol. 2: Applications. Springer-Verlag, Berlin, 2006.
MR 2191745
[16] B. S. Mordukhovich, J. V. Outrata:
Coderivative analysis of quasi-variational inequalities with applications to stability and optimization. SIAM J. Optim. 18 (2007), 389–412.
DOI 10.1137/060665609 |
MR 2338444
[17] J. V. Outrata:
A note on a class of equilibrium problems with equilibrium constraints. Cybernetica 40 (2004), 585–594.
MR 2120998 |
Zbl 1249.49017
[18] J. V. Outrata:
On constrained qualifications for mathematical programs with mixed complementarity constraints. Complementarity: Applications, Algorithms and Extensions, M. C. Ferris et al. (eds.), Kluwer, Dordrecht, 2001, pp. 253–272.
MR 1818625
[19] J. V. Outrata, M. Kočvara, and J. Zowe: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer, Dordrecht, 1998.
[20] J.-S. Pang, M. Fukushima:
Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games. Comput. Manag. Sci. 1 (2005), 21–56.
DOI 10.1007/s10287-004-0010-0 |
MR 2164953
[21] M. V. Pereira, S. Granville, M. H. C. Fampa, R. Dix, and L. A. Barroso:
Strategic bidding under uncertainty: A binary expansion approach. IEEE Transactions on Power Systems 20 (2005), 180–188.
DOI 10.1109/TPWRS.2004.840397
[22] D. Ralph, Y. Smeers: EPECs as models for electricity markets. Power Systems Conference and Exposition (PSCE), Atlanta, 2006, , , .
[23] R. T. Rockafellar, R. J.-B. Wets:
Variational Analysis. Springer-Verlag, Berlin, 1998.
MR 1491362
[24]
Stochastic Programming. Handbooks in Operations Research and Management Science, Vol. 10. A. Ruszczyński, A. Shapiro (eds.), Elsevier, Amsterdam, 2003.
MR 2051791
[25] H. Scheel, S. Scholtes:
Mathematical programs with equilibrium constraints: Stationarity, optimality and sensitivity. Math. Oper. Res. 25 (2000), 1–22.
DOI 10.1287/moor.25.1.1.15213 |
MR 1854317
[27] A. Shapiro, H. Xu:
Stochastic mathematical programs with equilibrium constraints, modeling and sample average approximation. Optimization Online 2005 (www.optimization-online.org).
MR 2412074
[28] Y. Smeers: How well can one measure market power in restructured electricity systems?. CORE Discussion Paper 2005/50 (2005), Center for Operations Research and Econometrics (CORE), Louvain.