Previous |  Up |  Next

Article

Keywords:
variational analysis; nonsmooth and set-valued optimization; equilibrium constraints; existence of optimal solutions; necessary optimality conditions; generalized differentiation
Summary:
In this paper we study set-valued optimization problems with equilibrium constraints (SOPECs) described by parametric generalized equations in the form \[ 0\in G(x)+Q(x), \] where both $G$ and $Q$ are set-valued mappings between infinite-dimensional spaces. Such models particularly arise from certain optimization-related problems governed by set-valued variational inequalities and first-order optimality conditions in nondifferentiable programming. We establish general results on the existence of optimal solutions under appropriate assumptions of the Palais-Smale type and then derive necessary conditions for optimality in the models under consideration by using advanced tools of variational analysis and generalized differentiation.
References:
[1] T. Q.  Bao, P.  Gupta, B. S.  Mordukhovich: Necessary conditions in multiobjective optimization with equilibrium constraints. J.  Optim. Theory Appl. 135 (2007), . MR 2346530
[2] T. Q.  Bao, B. S.  Mordukhovich: Variational principles for set-valued mappings with applications to multiobjective optimization. Control Cybern. 36 (2007), 531–562. MR 2376038
[3] J. M.  Borwein, Q. J.  Zhu: Techniques of Variational Analysis. CMS Books in Math., Vol. 20. Springer-Verlag, New York, 2005. MR 2144010
[4] F.  Facchinei, J.-S.  Pang: Finite-Dimensional Variational Inequalities and Complementary Problems, Vol. I, Vol.  II. Springer-Verlag, New York, 2003. MR 1955648
[5] J.  Jahn: Vector Optimization. Theory, Applications and Extensions. Series Oper. Res. Springer-Verlag, Berlin, 2004. MR 2058695
[6] Z.-Q.  Luo, J.-S.  Pang, and D.  Ralph: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge, 1997. MR 1419501
[7] B. S.  Mordukhovich: Variational Analysis and Generalized Differentiation. I. Basic Theory. Grundlehren Series (Fundamental Principles of Mathematical Sciences), Vol. 330. Springer-Verlag, Berlin, 2006. MR 2191744
[8] B. S.  Mordukhovich: Variational Analysis and Generalized Differentiation. II. Applications. Grundlehren Series (Fundamental Principles of Mathematical Sciences), Vol. 331. Springer-Verlag, Berlin, 2006. MR 2191745
[9] B. S.  Mordukhovich, J. V.  Outrata: On second-order subdifferentials and their applications. SIAM J. Optim. 12 (2001), 139–169. DOI 10.1137/S1052623400377153 | MR 1870589
[10] B. S.  Mordukhovich, J. V.  Outrata: Coderivative analysis of quasivariational inequalities with applications to stability and optimization. SIAM J.  Optim (to appear). MR 2338444
[11] B. S.  Mordukhovich, J. V.  Outrata, and M.  Červinka: Equilibrium problems with complementarity constraints: case study with applications to oligopolistic markets. Optimization (to appear). MR 2344087
[12] J. V.  Outrata: Optimality conditions for a class of mathematical programs with equilibrium constraints. Math. Oper. Res. 24 (1999), 627–644. DOI 10.1287/moor.24.3.627 | MR 1854246 | Zbl 1039.90088
[13] J. V.  Outrata: A generalized mathematical program with equilibrium constraints. SIAM J.  Control Optim. 38 (2000), 1623–1638. DOI 10.1137/S0363012999352911 | MR 1766433 | Zbl 0968.49012
[14] J. V.  Outrata: A note on a class of equilibrium problems with equilibrium constraints. Kybernetika 40 (2004), 585–594. MR 2120998 | Zbl 1249.49017
[15] J. V.  Outrata, M.  Kočvara, and J.  Zowe:: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer Academic Publishers, Dordrecht, 1998. MR 1641213
[16] S. M.  Robinson: Generalized equations and their solutions. I. Basic theory. Math. Program. Study 10 (1979), 128–141. DOI 10.1007/BFb0120850 | MR 0527064 | Zbl 0404.90093
[17] R. T.  Rockafellar, R. J.-B.  Wets: Variational Analysis. Grundlehren Series (Fundamental Principles of Mathematical Sciences), Vol. 317. Springer-Verlag, Berlin, 1998. MR 1491362
[18] X. Y.  Zheng, K.  F.  Ng: The Lagrange multiplier rule for multifunctions in Banach spaces. SIAM J.  Optim. 17 (2006), 1154–1175. DOI 10.1137/060651860 | MR 2274507 | Zbl 1127.49014
Partner of
EuDML logo