[1] W. Achtziger, C. Kanzow:
Mathematical programs with vanishing constraints: Optimality conditions and constraint qualifications. Math. Program (to appear).
MR 2386163
[2] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty:
Nonlinear Programming. Theory and Algorithms. 2nd edition. John Wiley & Sons, Hoboken, 1993.
MR 2218478
[3] M. L. Flegel, C. Kanzow:
A direct proof for $M$-stationarity under MPEC-ACQ for mathematical programs with equilibrium constraints. In: Optimization with Multivalued Mappings: Theory, Applications and Algorithms, S. Dempe, V. Kalashnikov (eds.), Springer-Verlag, New York, 2006, pp. 111–122.
MR 2243539
[4] C. Geiger, C. Kanzow: Theorie und Numerik restringierter Optimierungsaufgaben. Springer-Verlag, Berlin, 2002. (German)
[5] T. Hoheisel, C. Kanzow:
On the Abadie and Guignard constraint qualification for mathematical programs with vanishing constraints. Optimization (to appear).
MR 2561810
[6] T. Hoheisel, C. Kanzow:
Stationary conditions for mathematical programs with vanishing constraints using weak constraint qualifications. J. Math. Anal. Appl. 337 (2008), 292–310.
DOI 10.1016/j.jmaa.2007.03.087 |
MR 2356071
[7] Z.-Q. Luo, J.-S. Pang, and D. Ralph:
Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge, 1997.
MR 1419501
[10] J. V. Outrata, M. Kočvara, and J. Zowe: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Nonconvex Optimization and its Applications. Kluwer, Dordrecht, 1998.
[11] H. Scheel, S. Scholtes:
Mathematical programs with complementarity constraints: Stationarity, optimality, and sensitivity. Math. Oper. Res. 25 (2000), 1–22.
DOI 10.1287/moor.25.1.1.15213 |
MR 1854317