Article
Keywords:
abstract differential equations; semigroups of operators; rational approximations; $A$-stability
Summary:
The methods of arbitrarily high orders of accuracy for the solution of an abstract ordinary differential equation are studied. The right-hand side of the differential equation under investigation contains an unbounded operator which is an infinitesimal generator of a strongly continuous semigroup of operators. Necessary and sufficient conditions are found for a rational function to approximate the given semigroup with high accuracy.
References:
[1] N. Bourbaki:
Fonctions d’une variable réelle (théorie élémentaire). Hermann & Cie, Paris, 1961. (French)
Zbl 0131.05001
[2] J. C. Butcher:
The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods. John Wiley & Sons, Chichester, 1987.
MR 0878564 |
Zbl 0616.65072
[3] N. Dunford, J. Schwartz:
Linear Operators, Vol. I. Interscience, New York-London, 1963.
MR 0188745
[4] T. Kato:
Perturbation Theory for Linear Operators. Springer-Verlag, Berlin-Heidelberg-New York, 1966.
MR 0203473 |
Zbl 0148.12601
[5] M. Práger, J. Taufer, E. Vitásek:
Overimplicit multistep methods. Apl. Mat. 18 (1973), 399–421.
MR 0366041
[6] K. Yosida:
Functional analysis. Springer-Verlag, Berlin-Heidelberg-New York, 1971.
Zbl 0217.16001