[1] E. Acerbi, G. Mingione:
Regularity results for a class of functionals with nonstandard growth. Arch. Ration. Mech. Anal. 156 (2001), 121–140.
DOI 10.1007/s002050100117 |
MR 1814973
[2] H. J. Choe:
A regularity theory for a general class of quasilinear elliptic partial differential equations and obstacle problems. Arch. Ration. Mech. Anal. 114 (1991), 383–394.
DOI 10.1007/BF00376141 |
MR 1100802 |
Zbl 0733.35024
[5] G. Cupini, A. P. Migliorini:
Hölder continuity for local minimizers of a nonconvex variational problem. J. Convex Anal. 10 (2003), 389–408.
MR 2043864
[6] G. Cupini, R. Petti:
Morrey spaces and local regularity of minimizers of variational integrals. Rend. Mat. Appl., VII. Ser. 21 (2001), 121–141.
MR 1884939
[8] M. Eleuteri:
Hölder continuity results for a class of functionals with non standard growth. Boll. Unione Mat. Ital. 8, 7-B (2004), 129–157.
MR 2044264 |
Zbl 1178.49045
[9] L. Esposito, F. Leonetti, and G. Mingione:
Regularity results for minimizers of irregular integrals with $(p,q)$ growth. Forum Math. 14 (2002), 245–272.
DOI 10.1515/form.2002.011 |
MR 1880913
[10] V. Ferone, N. Fusco:
Continuity properties of minimizers of integral functionals in a limit case. J. Math. Anal. Appl. 202 (1996), 27–52.
DOI 10.1006/jmaa.1996.0301 |
MR 1402586
[11] I. Fonseca, N. Fusco:
Regularity results for anisotropic image segmentation models. Ann. Sc. Norm. Super. Pisa 24 (1997), 463–499.
MR 1612389
[12] I. Fonseca, N. Fusco, and P. Marcellini:
An existence result for a nonconvex variational problem via regularity. ESAIM, Control Optim. Calc. Var. 7 (2002), 69–95.
DOI 10.1051/cocv:2002004 |
MR 1925022
[13] N. Fusco, J. Hutchinson:
$C^{1,\alpha }$ partial regularity of functions minimising quasiconvex integrals. Manuscr. Math. 54 (1985), 121–143.
DOI 10.1007/BF01171703 |
MR 0808684
[15] D. Gilbarg, N. S. Trudinger:
Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin, 1977.
MR 0473443
[16] E. Giusti:
Direct Methods in the Calculus of Variations. World Scientific, Singapore, 2003.
MR 1962933 |
Zbl 1028.49001