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Abstract. We prove some optimal regularity results for minimizers of the integral func-
tional

∫
f(x, u, Du) dx belonging to the class K := {u ∈ W 1,p(Ω) : u > ψ}, where ψ is a

fixed function, under standard growth conditions of p-type, i.e.

L−1|z|p 6 f(x, s, z) 6 L(1 + |z|p).
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1. Introduction

The aim of this paper is the study of regularity properties of local minimizers of
integral functionals of the type

(1.1) F(u,Ω) :=
∫

Ω

f(x, u(x), Du(x)) dx

in the class K := {u ∈ W 1,p(Ω,
�
) : u > ψ}, where ψ is a fixed obstacle function,

Ω is a bounded open set of
� n , f : Ω× � × � n → �

is a Carathéodory function and

u ∈ W 1,1
loc (Ω,

�
). The assumptions we are going to consider here are weaker than

those usually employed in literature in that we are not assuming that the functional

considered in (1.1) admits an Euler equation, in particular we shall assume that the
Lagrangian f is convex in the gradient variable in a suitably strong way, see (H2),

*This research has been supported by INdAM.
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and not necessarily twice differentiable. Such assumptions have been considered since

the innovative paper of Fonseca and Fusco [11], where Lipschitz regularity results
have been achieved for unconstrained local minimizers. Subsequently these results
have been extended in [4], [5], [12] as far as standard functionals are considered and

in [1], [8], [9] as far as the vectorial case and non-standard growth conditions are
considered.

In this paper we extend the treatment of such functionals to the case of one-
sided obstacle problems, providing sharp regularity results in the setting of Hölder

and Morrey spaces. In particular, our results seem to be new in the standard case;
indeed, they extend in a sharp way those obtained by Choe [2], where regularity in

Morrey spaces is considered. This is made possible via a more careful estimation
using a suitable freezing techniques. The lack of smoothness of the energy density

is overcome by the use of Ekeland’s variational principle, a tool that revealed to be
crucial in regularity since the paper [13].

The results of this paper can be used to prove regularity theorems for obstacle
problems under non standard growth conditions, see e.g. [3].

2. Notation and statements

In the sequel Ω will denote a bounded open set in
� n and B(x,R) the open ball

{y ∈ � n : |x− y| < R}. As we are analysing the regularity properties of minimizers
inside Ω, it is not restrictive to assume Ω to be smooth.

If u is an integrable function defined on B(x,R), we will set

(u)x,R =
∫

B(x,R)

u(x)dx =
1

ωnRn

∫

B(x,R)

u(x) dx,

where ωn is the Lebesgue measure of B(0, 1). We shall also adopt the convention of
writing BR and (u)R instead of B(x,R) and (u)x,R respectively, provided the center
is not relevant or is clear from the context; moreover, unless otherwise stated, all

balls considered will have the same center. Finally, the letter c will freely denote a
constant, not necessarily the same in any two occurrences, while only the relevant

dependences will be highlighted.

The Carathéodory function f : Ω × � × � n → �
is supposed to satisfy a growth

condition of the type

L−1|z|p 6 f(x, u, z) 6 L(1 + |z|p)
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for all x ∈ Ω, u ∈ � , z ∈ � n , where p > 1 and L > 1. Next, we set

ς(x) := |Dψ(x)|p,(2.1)

F(u,A) :=
∫

A
f(x, u(x), Du(x)) dx,

Fψ(u,A) :=
∫

A
hψ(x, u(x), Du(x)) dx(2.2)

:=
∫

A
[f(x, u(x), Du(x)) + ς(x)] dx

for all u ∈W 1,1
loc (Ω) and for all A ⊂ Ω, where ψ ∈ W 1,p(Ω) is a fixed function.

With this type of standard growth, we adopt the following notion of local minimizer

and local Q-minimizer.

Definition 2.1. We say that a function u ∈ W 1,1
loc (Ω) is a local minimizer of the

functional F if |Du(x)|p ∈ L1
loc(Ω) and

∫

suppϕ

f(x, u(x), Du(x)) dx 6
∫

suppϕ

f(x, u(x) + ϕ(x), Du(x) +Dϕ(x)) dx

for all ϕ ∈W 1,1
0 (Ω) with compact support in Ω.

Definition 2.2. We say that a function u ∈ W 1,1
loc (Ω) is a local Q-minimizer of

the functional F with Q > 1 if for all v ∈W 1,1
loc (Ω) such that H := supp (u−v) ⊂⊂ Ω,

we have

F(u,H) 6 QF(v,H).

We shall consider the following growth, ellipticity and continuity conditions:

(H1) L−1(µ2 + |z|2)p/2 6 f(x, u, z) 6 L(µ2 + |z|2)p/2,

∫

Q1

[f(x0, u0, z0 +Dϕ(x)) − f(x0, u0, z0)] dx(H2)

> L−1

∫

Q1

(µ2 + |z0|2 + |Dϕ(x)|2)(p−2)/2|Dϕ(x)|2 dx

for some 0 6 µ 6 1, for all z0 ∈
� n , u0 ∈

�
, x0 ∈ Ω, ϕ ∈ C∞0 (Q1), whereQ1 = (0, 1)n,

(H3) |f(x, u, z)− f(x0, u0, z)| 6 Lω(|x− x0|+ |u− u0|)(µ2 + |z|2)p/2
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for all z ∈ � n , u, u0 ∈
�
, x, x0 ∈ Ω, where L > 1. Here ω :

� + → � + is a continuous,

nondecreasing function, vanishing at zero; we also suppose, without loss of generality,
that ω is a concave, bounded and, hence, subadditive function. Let us set

K := {u ∈ W 1,p(Ω): u > ψ}.

Now we recall the definition of Morrey and Campanato spaces (see for exam-
ple [16]).

Definition 2.3 (Morrey spaces). Let Ω be an open and bounded subset of
� n ,

let 1 6 p < +∞ and λ > 0. By Lp,λ(Ω) we denote the linear space of functions
u ∈ Lp(Ω) such that, if we set Ω(x0, %) := Ω ∩ B(x0, %), we get

‖u‖Lp,λ(Ω) :=
{

sup
x0∈Ω, 0<%<diam(Ω)

%−λ
∫

Ω(x0,%)

|u(x)|p dx
}1/p

< +∞.

It is easy to see that ‖u‖Lp,λ(Ω) is a norm with respect to which L
p,λ(Ω) is a

Banach space.

Definition 2.4 (Campanato spaces). Let Ω be an open and bounded subset
of
� n , let p > 1 and λ > 0. By Lp,λ(Ω) we denote the linear space of functions

u ∈ Lp(Ω) such that, if we set Ω(x0, %) := Ω ∩ B(x0, %), we get

[u]p,λ =
{

sup
x0∈Ω, 0<%< diam(Ω)

%−λ
∫

Ω(x0,%)

|u(x)− (u)x0,%|p dx
}1/p

< +∞,

where

(u)x0,% :=
1

|Ω(x0, %)|

∫

Ω(x0,%)

u(x) dx

is the average of u in Ω(x0, %).

Also in this case it is not difficult to show that Lp,λ(Ω) is a Banach space equipped
with the norm

‖u‖Lp,λ(Ω) = ‖u‖Lp(Ω) + [u]p,λ.
�������	��


2.5. The local variants Lp,λloc (Ω) and Lp,λloc (Ω) are defined in a standard
way:

u ∈ Lp,λloc (Ω) ⇔ u ∈ Lp,λ(Ω′) ∀Ω′ ⊂⊂ Ω,

u ∈ Lp,λloc (Ω) ⇔ u ∈ Lp,λ(Ω′) ∀Ω′ ⊂⊂ Ω.

The interest of Campanato spaces lies mainly in the following result which will be
used in the next sections. It can be found in [16, Section 2.3].
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Theorem 2.6. Let Ω be a bounded open set without internal cusps, and let n <
λ < n+ p. Then the space Lp,λ(Ω) is isomorphic to C0,α(Ω̄) with α = (λ−n)/p. We
also remark that, using Poincaré inequality, we have that, for a weakly differentiable

function v, if Dv ∈ Lp,λ(Ω), then v ∈ Lp,p+λ(Ω).

The first result we are able to obtain is for local minimizers in K of the functional

(2.3) G0(w,BR) =
∫

BR

g(Dw(x)) dx

where g :
� n → �

is a continuous function fulfilling the following growth and ellip-

ticity conditions:

(H4) L−1(µ2 + |z|2)p/2 6 g(z) 6 L(µ2 + |z|2)p/2,

∫

Q1

[g(z0 +Dϕ(x)) − g(z0)] dx(H5)

> L−1

∫

Q1

(µ2 + |z0|2 + |Dϕ(x)|2)(p−2)/2|Dϕ(x)|2 dx

for some 0 6 µ 6 1, for all z0 ∈
� n , ϕ ∈ C∞0 (Q1), where Q1 = (0, 1)n, L > 1, p > 1.

More precisely, we have

Theorem 2.7. Let v ∈W 1,1
loc (Ω) be a local minimizer of the functional (2.3) in K,

where g is a continuous function satisfying (H4) and (H5) and the function ψ fulfils
the assumption

(2.4) Dψ ∈ Lp,λloc (Ω),

for some 0 < λ < n. Then also Dv ∈ Lp,λloc (Ω) for the same λ.

As an immediate consequence of this result we deduce the following theorem.

Theorem 2.8. If the assumptions of Theorem 2.7 hold with λ > n − p, then

v ∈ C0,α
loc (Ω) with α = 1− (n− λ)/p.

Now if we assume that the obstacle ψ is a little more integrable, we are able
to deduce the following theorem which holds for the local minimizers in K of the

functional (1.1).
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Theorem 2.9. Let u ∈ W 1,1
loc (Ω) be a local minimizer of the functional (1.1) in K,

where f is a continuous function satisfying (H1), (H2) and (H3) and the function ψ
fulfils the assumption

(2.5) Dψ ∈ Lq,λloc (Ω),

where q = pr for some r > 1 and n− p < λ < n. Then Du ∈ Lp,λloc (Ω).

Further improvements are still possible, see Remark 5.3.
Also in this case the following result can be obtained immediately from the previous

one.

Theorem 2.10. Under the assumptions of Theorem 2.9, u ∈ C0,α
loc (Ω) with α =

1− (n− λ)/p.

Finally, if the Lagrangian f is more regular and the obstacle stays in a Campanato
space, we have

Theorem 2.11. Let u ∈ W 1,1
loc (Ω) be a local minimizer of the functional (1.1)

in K, where f is a function of class C2 satisfying (H1), (H2) and (H3) and the

function ψ fulfils the assumption

(2.6) Dψ ∈ Lp,λloc (Ω),

for some n < λ < n+ p. If we assume that

(2.7) ω(R) 6 LRξ

for some 0 < ξ 6 1 and all R 6 1, then Du ∈ Lp,λ̃loc (Ω) for some λ̃ ≡ λ̃(λ, ξ, p, n) such
that n < λ̃ < n+ p.

In this case we have the following consequence.

Theorem 2.12. Under the assumptions of Theorem 2.11, u ∈ C1,α
loc (Ω) for some

0 < α < 1.

3. Preliminary results

• A classical result
The following result is taken from [11], see also [9].
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Theorem 3.1. Let g :
� n → �

be a continuous function satisfying (H4) and

(H5). Let w ∈ W 1,p(Ω) be a local minimizer of the functional (2.3) with BR ⊂⊂ Ω.
Then Dw is locally bounded and, moreover, if 0 < % < R/2, then

∫

B%

(µ2 + |Dw(x)|2)p/2 dx 6 c
( %
R

)n ∫

BR

(µ2 + |Dw(x)|2)p/2 dx

with c depending only on p, L.

• A remark about local minimizers with obstacles
If v is a local minimizer of the functional (2.3) in K with the Lagrangian g of

class C2, then it is easy to see that

(3.1)
∫

Ω

A(Dv(x)) ·Dϕ(x) dx > 0 ∀ϕ ∈ C∞0 (Ω) such that ϕ > 0,

where A(z) := Dg(z) and A(z) satisfies the monotonicity and growth conditions

(3.2) A(z) · z > ν|z|p − c

for some ν > 0 and

(3.3) |A(z)| 6 L(1 + |z|p−1).

Moreover we have that

(3.4)
∫

Ω

A(Dv(x)) · (Dv(x) −Dw(x)) dx 6 0 ∀w ∈ K, w − v ∈ W 1,p
0 (Ω).

• A higher integrability result
If u is a local minimizer of the functional (1.1) in K, then it is possible to deduce

for u a higher integrability result.

Theorem 3.2. Let u be a local minimizer of the functional (1.1) in K, where the
Lagrangian f satisfies (H1) and the function ψ fulfils (2.5). Then there exist two

positive constants c, δ depending on p, L such that, if BR ⊂⊂ Ω, then

(3.5)

( ∫

BR/2

|Du(x)|p(1+δ) dx
)1/(1+δ)

6 c

∫

BR

|Du(x)|p dx+ cR(λ−n)/(1+δ).

Moreover, if the function ψ fulfils (2.6), then (3.5) holds with λ replaced by n.
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�
�������
. Working as in [8] we can easily find the Caccioppoli inequality for local

minimizers of the functional (1.1) in K

(3.6)
∫

BR/2

|Du(x)|p dx 6 c

∫

BR

∣∣∣u(x)− (u)R
R

∣∣∣
p

dx+ c

∫

BR

(|Dψ(x)|p + 1) dx

from what we deduce

∫

BR/2

|Du(x)|p dx 6 c

( ∫

BR

|Du(x)|p/θ dx
)θ

+ c

∫

BR

(|Dψ(x)|p + 1) dx

for a suitable θ > 1. Now the assumption (2.5) allows us to use a classical result
(see [16, Theorem 6.6]) based on Gehring’s lemma and deduce that there exists

δ ∈ (0, (q − p)/p) such that

(∫

BR/2

|Du(x)|p(1+δ) dx
)1/(1+δ)

6 c

∫

BR

|Du(x)|p dx+ c

(∫

BR

(|Dψ(x)|p(1+δ) + 1) dx
)1/(1+δ)

.

Using again assumption (2.5), we have

( ∫

BR/2

|Du(x)|p(1+δ) dx
)1/(1+δ)

6 c

∫

BR

|Du(x)|p dx+ c

( ∫

BR

(|Dψ(x)|q + 1) dx
)1/(1+δ)

6 c

∫

BR

|Du(x)|p dx+ cR(λ−n)/(1+δ).

This completes the proof. The other case is obtained in a similar way. �

• An up-to-the-boundary higher integrability result
If u is a local minimizer of the functional (2.3) in K, then the following up-to-the-

boundary higher integrability result can be easily deduced:
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Proposition 3.3. Let g :
� n → �

be a continuous function fulfilling (H4). Let

v be a local minimizer of the functional (2.3) in the Dirichlet class {v ∈ u+W 1,p
0 (BR) :

v ∈ K} for some u ∈ W 1,p(BR), where the function ψ fulfils the assumption (2.5).
If, moreover, u ∈ W 1,q̄(BR) for a certain p < q̄ < q, then there exist p < r̄ < q̄ and

c depending on p, L but not on u or R such that v ∈ W 1,r̄(BR/2) and

( ∫

BR/2

|Dv(x)|r̄ dx
)p/r̄

6 c

[∫

BR

(1 + |Du(x)|q̄) dx
]p/q̄

(3.7)

+ c

[ ∫

BR

(1 + |Dψ(x)|q̄) dx
]p/q̄

.

The same holds if the function ψ fulfils assumption (2.6) instead.
�
�������

. The proof follows as in [4], the only difference is that now we have to

take into consideration the presence of the obstacle function; so for example, for the
Caccioppoli inequality, we have that, for any B2% ⊂ BR/2 (not necessarily having the

same center)

∫

B%

|Dv(x)|p dx 6 c

∫

B2%

∣∣∣v(x)− (v)2%
%

∣∣∣
p

dx+ c

∫

B2%

(1 + |Dψ(x)|p) dx,

and so on. The rest of the proof follows as in the standard case, with the obvious
modifications. �

• A classical iteration lemma
The following classical iteration lemma can be found for example in [16]. Here we

state this lemma with formulas showing the precise dependence on the constants we
will need later.

Lemma 3.4. Let ϕ(t) be a nonnegative and nondecreasing function. Suppose
that

ϕ(%) 6 A
[( %
R

)α
+ ε

]
ϕ(R) +BRβ

for all % 6 R 6 R0, with A, B, α, β nonnegative constants, β < α. Then there exists

a constant ε0 = ε0(A,α, β) such that if ε < ε0, we have

ϕ(%) 6 c
[( %
R

)β
ϕ(R) +B%β

]

for all % 6 R 6 R0, where c is a constant depending on α, β, A but independent

of B.
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• An auxiliary decay estimate
This estimate, which will be useful later, is established by following an idea

from [10].

Proposition 3.5. Let u ∈ W 1,p(Ω) be a local minimizer of the functional (1.1)
in K; assume that ς ∈ Lr(Ω) where the function ς is introduced in (2.1) and 1 < r <

n/p, with p < n. Then for any ε > 0 and for any B% ⊂ BR ⊂ Ω with R 6 1,

∫

B%

|Du(x)|p dx 6 c
[( %
R

)n−p+pσ1

+ ε
]

×
∫

BR

|Du(x)|p dx+ cεR
n(1−1/r)

[∫

BR

(|ς(x)|r + 1) dx
]1/r

for some 0 < σ1 6 1, where c is a constant depending on L, n, p while cε depends
also on ε.

�
�������
. Let us fix any BR ⊂ Ω with R 6 1 and consider the functional

Fψ(w,BR) :=
∫

BR

[f(x,w(x), Dw(x)) + ς(x)] dx

with w ∈ V where V := {v ∈ u+W 1,1
0 (BR)}.

First of all we notice that

inf
w∈V

Fψ(w,BR)

is finite. So let us fix any δ > 0 and choose uδ ∈ V such that

(3.8) Fψ(uδ , BR) 6 inf
w∈V

Fψ(w,BR) + δRn.

We want to use the minimality of u. Since uδ does not generally stay in K we set
wδ := max{ψ, uδ} and Σ := {x ∈ � n : uδ > ψ}. In this way we ensure that wδ ∈ K
and, by the minimality of u, we have

(3.9) F(u,BR) 6 F(wδ , BR).
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Therefore we have

Fψ(u,BR) = F(u,BR) +
∫

BR

ς(x) dx

(3.9)

6 F(wδ , BR) +
∫

BR

ς(x) dx

= F(wδ , BR ∩ Σ) + F(wδ , BR \ Σ) +
∫

BR

ς(x) dx

6 F(uδ , BR) + F(ψ,BR) +
∫

BR

ς(x) dx

= Fψ(uδ , BR) + F(ψ,BR)
(3.8)

6 inf
w∈V

Fψ(w,BR) + δRn + L

(∫

BR

ς(x) dx+Rn
)

;

we set

H(R) := L

(∫

BR

ς(x) dx+Rn
)
.

Then letting δ → 0 we have

Fψ(u,BR) 6 inf
w∈V

Fψ(w,BR) +H(R).

At this point, the functional Fψ(w,BR) is lower semicontinuous with respect to the
topology induced on V by the distance

d(u1, u2) := (H(R))−1/pR−n(1−1/p)

∫

BR

|Du1(x) −Du2(x)| dx;

then Ekeland’s Lemma (see Theorem 1 in [7]) implies that there exists v ∈ V such
that

(i)
∫
BR

|Dv(x) −Du(x)| dx 6 (H(R))1/pRn(1−1/p),

(ii) Fψ(v,BR) 6 Fψ(u,BR),
(iii) v minimizes the functional

Fψ(w,BR) +
(H(R)
Rn

)(p−1)/p
∫

BR

|Dw(x) −Dv(x)| dx.

Actually it is not difficult to show that v ∈ u+W 1,p
0 (BR) and it is a local Q-minimizer

(with Q depending only on L) of the functional

w 7→
∫

BR

(
|Dw(x)|p +

H(R)
Rn

+ 1
)

dx.
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Then using a classical result (see for example [16, Theorem 6.7], in which for-

mula (6.60) holds even without the term |u|p∗ on both sides of the inequality) we
obtain, for some p < q1 < n,

(3.10)

( ∫

BR/2

|Dv(x)|q1 dx
)1/q1

6 c

[( ∫

BR

|Dv(x)|p
)1/p

+
(
1 +

H(R)
Rn

)1/p
]
;

we can choose q1 = p(1 + δ) where δ is the higher integrability exponent for u given
by Theorem 3.2, so that the following inequality holds:

( ∫

BR/2

|Du(x)|p(1+δ) dx
)1/(1+δ)

(3.11)

6 c

∫

BR

|Du(x)|p dx+ c

(∫

BR

(|Dψ(x)|p(1+δ) + 1) dx
)1/(1+δ)

.

We can choose δ so small that δ < r − 1.

At this point another classical result (see [10, Theorem 3.5], where also in this case
formula (3.6) still holds even without the term |u|p on both sides of the inequality)
entails that there exists σ1 > 0 such that, for any 0 < % < R,

(3.12)
∫

B%

|Dv(x)|p dx 6 c
( %
R

)n−p+pσ1
[∫

BR

|Dv(x)|p dx+H(R) +Rn
]
.

Now, choosing 0 < θ < 1 such that θ/q1 + 1− θ = 1/p, we obtain

( ∫

BR/2

|Du−Dv|p dx
)1/p

6
( ∫

BR/2

|Du−Dv|q1 dx
)θ/q1( ∫

BR/2

|Du−Dv| dx
)1−θ

and this implies, with ε ∈ (0, 1),

( ∫

BR/2

|Du(x)−Dv(x)|p dx
)1/p

(3.13)

6 ε

[( ∫

BR/2

|Du(x)|q1 dx
)1/q1

+
( ∫

BR/2

|Dv(x)|q1 dx
)1/q1]

+ cε

∫

BR/2

|Du(x)−Dv(x)| dx
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(3.11)

6 εc

[( ∫

BR

|Du(x)|p dx
)1/p

+ c

( ∫

BR

(|ς(x)|q1/p + 1) dx
)1/q1

(3.10)
+

( ∫

BR

|Dv(x)|p
)1/p

+
(
1 +

H(R)
Rn

)1/p
]

(i)
+ cε

(H(R)
Rn

)1/p

.

On the other hand,
∫

BR

|Dv(x)|p dx(3.14)

6 L

∫

BR

f(x, v(x), Dv(x)) dx+ L

∫

BR

ς(x) dx− L

∫

BR

ς(x) dx

= LFψ(v,BR)− L

∫

BR

ς(x) dx
(ii)

6 LFψ(u,BR)− L

∫

BR

ς(x) dx

= LF(u,BR) 6 c(L)
∫

BR

(|Du(x)|p + 1) dx.

At this point, (3.13) becomes

( ∫

BR/2

|Du(x)−Dv(x)|p dx
)1/p

6 εc(L)
[( ∫

BR

(|Du(x)|p + 1) dx
)1/p

+
( ∫

BR

(|ς(x)|q1/p + 1) dx
)1/q1

+
(
1 +

H(R)
Rn

)1/p
]

+ cε

(H(R)
Rn

)1/p

.

Hence, raising both sides of the previous inequality to the power p and getting rid
of the averages, we get

∫

BR/2

|Du(x)−Dv(x)|p dx(3.15)

6 εc(p, L)
[∫

BR

|Du(x)|p dx+Rn +Rn(1−p/q1)

×
(∫

BR

(|ς(x)|q1/p + 1) dx
)p/q1]

+ cε(p)H(R).

This allows us to conclude (using the fact that δ < r − 1) that
∫

B%

|Du(x)|p dx

6 2p−1

∫

B%

|Dv(x)|p dx+ 2p−1

∫

BR/2

|Du(x) −Dv(x)|p dx
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(3.12)

6 c(p, L)
( %
R

)n−p+pσ1
[∫

BR

|Dv(x)|p dx+H(R) +Rn
]

(3.15)
+ εc(p, L)

[∫

BR

|Du(x)|p dx+Rn +Rn(1−1/r)

(∫

BR

|ς(x)|r dx
)1/r]

+ cε(p)H(R)

6 c(p, L)
[( %
R

)n−p+pσ1

+ ε

]∫

BR

|Du(x)|p dx

+ cεR
n(1−1/r)

(∫

BR

(|ς(x)|r + 1) dx
)1/r

and this completes the proof. �

• A Hölder regularity result
Theorem 3.6. Let u ∈ W 1,p(Ω) be a local minimizer of the functional (1.1) in K,

with p < n; assume that ς ∈ Lr,λloc(Ω) where ς is the function introduced in (2.1),
1 < r < n/p and 0 < λ < n. If, moreover, n− pr < λ < n, then u is locally Hölder

continuous in Ω. On the other hand, if p > n then u is trivially locally Hölder

continuous too.
�
�������

. We immediately remark that, if p > n then u is trivially locally Hölder
continuous in Ω due to the Sobolev embedding. On the other hand, if p = n the

same conclusion can be obtained using the higher integrability result (3.5) and the
previous assertion. So we concentrate our discussion on the case p < n.

From Proposition 3.5 we have that, for any ε > 0 and for any B% ⊂ BR ⊂ Ω with
R 6 1,

∫

B%

|Du(x)|p dx 6 c
[( %
R

)n−p+pσ1

+ ε
] ∫

BR

|Du(x)|p dx

+ cεR
n(1−1/r)

[∫

BR

(|ς(x)|r + 1) dx
]1/r

for some 0 < σ1 6 1, where c is a constant depending on L, n, p while cε depends
also on ε. Now, with our assumptions on the function ς , we can immediately deduce

that
∫

B%

|Du(x)|p dx 6 c
[( %
R

)n−p+pσ1

+ ε
] ∫

BR

|Du(x)|p dx+ cεR
n−(n−λ)/r‖ς‖Lr,λ(BR).

As, moreover, λ > n− pr, there exists σ2 > 0 such that

λ

r
− n

r
= pσ2 − p
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and therefore
∫

B%

|Du(x)|p dx 6 c
[( %
R

)n−p+pσ1

+ ε
] ∫

BR

|Du(x)|p dx+ cεR
n−p+pσ2 .

Choosing for example γ := 1
2 min{σ1, σ2} and using the classical iteration Lemma 3.4,

we deduce that

∫

B%

|Du(x)|p dx 6 c
( %
R

)n−p+pγ[∫

BR

|Du(x)|p dx+ cεR
n−p+pγ

]
.

At this point, Theorem 2.6 allows us to conclude that u ∈ C0,γ
loc (Ω). This completes

the proof. �

From now on, since we are going to prove local regularity results, we shall assume

that any local minimizer u of the functional (1.1) in K is globally Hölder continuous,
that is for all x, y ∈ Ω

(3.16) |u(x)− u(y)| 6 [u]γ |x− y|γ 6 c|x− y|γ .

4. Proof of Theorem 2.7

The proof of this theorem is carried out in three steps: first we establish a decay

estimate for local minimizers of the functional (2.3) in K, with g ∈ C2; then we
remove the smoothness of the function g by means of a standard approximation
argument and finally we conclude using a classical iteration lemma.

Step 1. We start by proving the first result:

Proposition 4.1. Let v ∈ W 1,1
loc (Ω) be a local minimizer of the functional (2.3)

in K, where g ∈ C2 satisfies (H4) and (H5). If the function ψ fulfils (2.4) for some

0 < λ < n, then for all 0 < % < R/2 and any ε > 0

∫

B%

|Dv(x)|p dx 6 c
[( %
R

)n
+ ε

] ∫

BR

(1 + |Dv(x)|p) dx+ c̄Rλ,

where c ≡ c(p, L, ν) and c̄ ≡ c̄(p, L, ε, ν) (the coefficient ν was introduced in (3.2)).
�
�������

. We fix R > 0; then let w ∈ v+W 1,p
0 (BR) be the solution of the equation

(4.1)
∫

BR

A(Dw(x)) ·Dϕ(x) dx =
∫

BR

A(Dψ(x)) ·Dϕ(x) dx ∀ϕ ∈W 1,p
0 (BR).
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Then by the maximum principle (for more details see for example [15]) we get that

w > ψ in BR since v > ψ on ∂BR. We also have

(4.2)
∫

BR

A(Dv(x)) · (Dv(x) −Dw(x)) dx 6 0,

since v − w ∈W 1,p
0 (BR) and w > ψ in BR.

Now let z be the solution of the minimum problem

(4.3) min{G0(z,BR) : z ∈ v +W 1,p
0 (BR)},

where G0 was introduced in (2.3). It is evident that z satisfies

(4.4)
∫

BR

A(Dz(x)) ·Dϕ(x) dx = 0 ∀ϕ ∈ W 1,p
0 (BR);

moreover, z = w on ∂BR, so for example

(4.5)
∫

BR

A(Dz(x)) · (Dw(x) −Dz(x)) dx = 0.

First of all, from Theorem 3.1 we get for any 0 < % < R/2

∫

B%

(µ2 + |Dz(x)|2)p/2 dx 6 c
( %
R

)n ∫

BR

(µ2 + |Dz(x)|2)p/2 dx

where the constant c depends only on p, L. Moreover, using the minimality of z we
get

∫

BR

|Dz(x)|p dx 6 L

∫

BR

g(Dz(x)) dx 6 L

∫

BR

g(Dw(x)) dx

6 c(L)
∫

BR

(1 + |Dw(x)|p) dx

as w − z ∈ W 1,p
0 (BR).

Now, we would like to compare z and w. If p > 2, we readily have
∫

BR

|Dw(x)−Dz(x)|p dx

6 c

∫

BR

(1 + |Dw(x)|2 + |Dz(x)|2)(p−2)/2|Dw(x) −Dz(x)|2 dx

6 c

∫

BR

〈A(Dw(x)) −A(Dz(x)), Dw(x) −Dz(x)〉 dx
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(4.5)
= c

∫

BR

〈A(Dw(x)), Dw(x) −Dz(x)〉 dx

(4.1)
= c

∫

BR

〈A(Dψ(x)), Dw(x) −Dz(x)〉 dx

(3.3)

6 c

∫

BR

(|Dψ(x)|p−1 + 1) · |Dw(x) −Dz(x)| dx

6 c

∫

BR

|Dψ(x)|p−1 · |Dw(x) −Dz(x)| dx+ c

∫

BR

|Dw(x) −Dz(x)| dx

6 c

∫

BR

|Dψ(x)|p dx+
1
4

∫

BR

|Dw(x) −Dz(x)|p dx

+ cRn(p−1)/p

(∫

BR

|Dw(x) −Dz(x)|p dx
)1/p

6 c

∫

BR

|Dψ(x)|p dx+
1
2

∫

BR

|Dw(x) −Dz(x)|p dx+ cRn,

where (4.1) was used with the choice ϕ = w − z, Young’s inequality was used twice
and the constants c depend only on p, L. So, using assumption (2.4), we get

∫

BR

|Dw(x) −Dz(x)|p dx 6 cRλ.

In a rather similar way, if 1 < p < 2, using again Young’s inequality

∫

BR

|Dw(x) −Dz(x)|p dx

6
(∫

BR

(1 + |Dw(x)|2 + |Dz(x)|2)(p−2)/2|Dw(x) −Dz(x)|2 dx
)1/2

×
(∫

BR

(1 + |Dw(x)|2 + |Dz(x)|2)(2−p)/2|Dw(x) −Dz(x)|2p−2 dx
)1/2

6 c(L)
[∫

BR

(|Dψ(x)|p−1 + 1) · |Dw(x) −Dz(x)| dx
]1/2

×
(∫

BR

(1 + |Dw(x)|p) dx
)1/2

6 c(ε, L)
[∫

BR

(|Dψ(x)|p−1 + 1) · |Dw(x) −Dz(x)| dx
]

+ ε

∫

BR

(1 + |Dw(x)|p) dx
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6 c(ε, L, p)
∫

BR

(|Dψ(x)|p + 1) dx+
1
2

∫

BR

|Dw(x) −Dz(x)|p dx

+ ε

∫

BR

|Dw(x)|p dx

gives us

(4.6)
∫

BR

|Dw(x) −Dz(x)|p dx 6 c(ε, L, p)Rλ + ε

∫

BR

|Dw(x)|p dx.

Summarizing, for any p > 1 we have (4.6). So we get

∫

B%

|Dw(x)|p dx 6 2p−1

∫

B%

|Dz(x)|p dx+ 2p−1

∫

B%

|Dw(x) −Dz(x)|p dx

6 c(p)
∫

B%

(µ2 + |Dz(x)|2)p/2 dx+ c(ε, L, p)Rλ

+ 2p−1ε

∫

BR

|Dw(x)|p dx

6 c
( %
R

)n ∫

BR

(µ2 + |Dz(x)|2)p/2 dx+ c̄Rλ

+ 2p−1ε

∫

BR

|Dw(x)|p dx

6 c
[( %
R

)n
+ ε

] ∫

BR

(1 + |Dw(x)|p) dx+ c̄Rλ,

where the constant c depends only on p, L and the constant c̄ depends on p, L, ε.
Now, we would like to compare w and v. We get

∫

BR

|Dw(x)|p dx
(3.2)

6 1
ν

∫

BR

〈A(Dw(x)), Dw(x)〉 dx+ cRn

(4.1)
=

1
ν

∫

BR

〈A(Dw(x)), Dv(x)〉 dx

+
1
ν

∫

BR

〈A(Dψ(x)), Dw(x) −Dv(x)〉 dx+ cRn

6 L

ν

∫

BR

(|Dw(x)|p−1 + 1)|Dv(x)| dx

+
L

ν

∫

BR

(|Dψ(x)|p−1 + 1)|Dw(x)| dx

+
L

ν

∫

BR

(|Dψ(x)|p−1 + 1)|Dv(x)| dx+ cRn
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6 1
2

∫

BR

|Dw(x)|p dx+ c

∫

BR

|Dv(x)|p dx

+ c

∫

BR

|Dψ(x)|p dx+ cRn,

where (4.1) is applied with the choice ϕ = w − v and the constants c depend only
on p, L, ν. So, using assumption (2.4), we have

(4.7)
∫

BR

|Dw(x)|p dx 6 c

∫

BR

|Dv(x)|p dx+ cRλ.

On the other hand, working as for (4.6), it is not hard to get

∫

BR

|Dv(x) −Dw(x)|p dx 6 c(ε, L, p, ν)Rλ + ε

∫

BR

|Dv(x)|p dx,

which is valid for all p > 1 and for any ε > 0. Indeed, when developing the analogue
of (4.6) with v(x) replacing z(x), it is sufficient to write

∫

BR

〈A(Dw(x)) −A(Dv(x)), Dw(x) −Dv(x)〉 dx

6
∫

BR

〈A(D(w(x)), Dw(x) −Dv(x)〉 dx,

which comes from (4.2). Now for any 0 < % < R/2 and any ε > 0

∫

B%

|Dv(x)|p dx 6 2p−1

∫

B%

|Dw(x)|p dx+ 2p−1

∫

B%

|Dv(x)−Dw(x)|p dx

6 c(p)
[( %
R

)n
+ ε

] ∫

BR

(1 + |Dw(x)|p) dx+ c(ε, L, p)Rλ

+ ε2p−1

∫

BR

|Dv(x)|p dx

(4.7)

6 c
[( %
R

)n
+ ε

] ∫

BR

(1 + |Dv(x)|p) dx+ c̄Rλ

where c depends only on p, L, ν while c̄ depends on ε, p, L, ν. This completes the
proof. �

Step 2. We remove the C2-regularity of the function g.
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Proposition 4.2. Let v ∈ W 1,1
loc (Ω) be a local minimizer of the functional (2.3)

in K, where g is a continuous function satisfying (H4) and (H5). If the function ψ
fulfils (2.4) for some 0 < λ < n, then for all 0 < % < R/2 and any ε > 0

(4.8)
∫

B%

|Dv(x)|p dx 6 c
[( %
R

)n
+ ε

] ∫

BR

(1 + |Dv(x)|p) dx+ c̄Rλ,

where c ≡ c(p, L, ν) and c̄ ≡ c̄(p, L, ε, ν).
�
�������

. The proof relies on a standard approximation argument, see [11], [4].

Here we confine ourselves only to a sketch of this proof. Let us consider (Gm)m∈ �
to be a sequence of continuous functions defined by

Gm(z) :=
∫

B(0,1)

ϕ(y)g
(
z +

y

m

)
dy

where ϕ : B(0, 1) → [0, 1] is a positive and symmetric mollifier. Then for any m ∈ �
it is not hard to prove, following [11], that Gm satisfies (H4) and (H5) with L replaced

by a suitable constant c dependent only on L and p and independent ofm and with µ2

replaced by µ2 + 1/m2. At this point we define vm ∈ v +W 1,p
0 (BR) as the unique

minimizer in K of the functional

Gm(w,BR) :=
∫

BR

Gm(Dw(x)) dx

in the Dirichlet class v +W 1,p
0 (BR). Using a standard coercivity argument and the

strict convexity of the functional (2.3) (see for example [1]), it turns out that, up to
subsequences, vm weakly converges to v in W 1,p(BR) and the estimate (4.8) follows
by passing to the limit of the corresponding estimates valid uniformly for each vm.

�

Step 3. Now we have that the following estimate holds for all 0 < % < R/2 and
any ε > 0:

∫

B%

|Dv(x)|p dx 6 c
[( %
R

)n
+ ε

] ∫

BR

(1 + |Dv(x)|p) dx+ c̄Rλ,

where c ≡ c(p, L, ν) and c̄ ≡ c̄(p, L, ε, ν). Using Lemma 3.4, we can choose a radius
R1 ≡ R1(p, L, ν) and a constant ε0 > 0 such that, if ε 6 ε0, we may deduce

∫

B%

|Dv(x)|p dx 6 c̄%λ,

with c̄ ≡ c̄(p, L, ν, ε) whenever 0 < % < R1, a fact which we may assume without loss
of generality. This allows us to conclude that Dv ∈ Lp,λloc (Ω). �
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5. Proof of Theorem 2.9

Also the proof of this result is divided into three parts: in the first step we establish
a technical estimate which will be used in the last part of the proof. This estimate can

be only obtained provided the function g is of class C2; therefore in the second step we
must remove this further regularity assumption by means of another approximation

argument similar to the one used in Proposition 4.2.

Step 1. We first prove the following proposition.

Proposition 5.1. Let g :
� n → �

be a function of class C2 satisfying (H4) and
(H5) with L replaced by 8pL and µ > 0. Let u ∈ K, BR ⊂ Ω and let v0 ∈ W 1,p(Ω)
be a minimizer of the functional

H(w,BR) :=
∫

BR

g(Dw(x)) dx+ θ0

∫

BR

|Dw −Dv0| dx

:= G0(w,BR) + θ0

∫

BR

|Dw −Dv0| dx

in the Dirichlet class

(5.1) D := {w ∈ K : w = u on ∂BR},

where θ0 > 0. Then, for all β > 0, for all A0 > 0 and for any ε > 0 we have

∫

B%

|Dv0(x)|p dx 6 c
[( %
R

)n
+ ε

] ∫

BR

(1 + |Dv0(x)|p) dx+ c̄Rλ

+ cθ0

∫

BR

|Du(x)−Dv0(x)| dx+ cRnθ
p/(p−1)
0

[ 1
A0

]pβ/(p−1)

+ c[A0]pβ
∫

BR

(1 + |Du(x)|p) dx

for any 0 < % < R/2, where the constants c depend only on L, p, ν while the
constant c̄ depends also on ε.

�
�������
. Let v ∈ W 1,p(BR) be a local minimizer of the functional (2.3) in

the Dirichlet class (5.1), where g is the function introduced in the statement of

Proposition 5.1. So by Proposition 4.1 we have for any 0 < % < R/2 and any ε > 0

∫

B%

|Dv(x)|p dx 6 c
[( %
R

)n
+ ε

] ∫

BR

(1 + |Dv(x)|p) dx+ c̄Rλ,
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with constants c ≡ c(L, p, ν) and c̄ ≡ c̄(L, p, ν, ε); thus comparing v and v0 and using

the minimality of v in D, we obtain for any 0 < % < R/2 and any ε > 0

(5.2)
∫

B%

|Dv(x)|p dx 6 c
[( %
R

)n
+ ε

] ∫

BR

(1 + |Dv0(x)|p) dx+ c̄Rλ,

where c ≡ c(p, L, ν) and c̄ ≡ c̄(p, L, ε, ν). We remark that for obtaining this first
result it is not necessary to assume g ∈ C2 as we could use directly Proposition 4.2.

Moreover, arguing in a standard way and using (5.2), it is possible to obtain the
inequality

∫

B%

|Dv0(x)|p dx 6 c
[( %
R

)n
+ ε

] ∫

BR

(1 + |Dv0(x)|p) dx

+ c

∫

BR

(µ2 + |Dv0(x)|2 + |Dv(x)|2)(p−2)/2

× |Dv0(x)−Dv(x)|2 dx+ c̄Rλ

and the estimate (since in our case we are assuming µ > 0)

G0(v0)− G0(v) > c−1

∫

BR

(µ2 + |Dv0(x)|2 + |Dv(x)|2)(p−2)/2|Dv0(x)−Dv(x)|2 dx.

It is here that we specifically need the C2-regularity of the function g. On the other
hand, using the minimality of v0 and the triangular inequality, we deduce

G0(v0)− G0(v) 6 H(v0)−H(v) + θ0

∫

BR

|Dv0(x)−Dv(x)| dx

+ θ0

∫

BR

|Dv(x) −Du(x)| dx− θ0

∫

BR

|Dv(x) −Du(x)| dx

6 θ0

∫

BR

|Du(x)−Dv0(x)| dx

+
∫

BR

{
θ0

[ 1
A0

]β}
{|Dv(x) −Du(x)|[A0]β} dx

6 θ0

∫

BR

|Du(x)−Dv0(x)| dx+ cRnθ0
p/(p−1)

[ 1
A0

]pβ/(p−1)

+ c[A0]pβ
∫

BR

(1 + |Du(x)|p) dx

for all β > 0 and all A0 > 0. Combining all the estimates we have just obtained, we
get the assertion. �

Step 2. We now remove the assumption of smoothness of the function g.
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Proposition 5.2. Let g :
� n → �

be a continuous function satisfying (H4) and

(H5). Let u ∈ K, BR ⊂ Ω and let v0 ∈W 1,p(Ω) be a minimizer of the functional

H(w,BR) :=
∫

BR

g(Dw(x)) dx+ θ0

∫

BR

|Dw −Dv0| dx

:= G0(w,BR) + θ0

∫

BR

|Dw −Dv0| dx

in the Dirichlet class (5.1) where θ0 > 0. Then for all β > 0, for all A0 > 0 and for
any ε > 0 we have

∫

B%

|Dv0(x)|p dx 6 c
[( %
R

)n
+ ε

] ∫

BR

(1 + |Dv0(x)|p) dx+ c̄Rλ

+ cθ0

∫

BR

|Du(x)−Dv0(x)| dx+ cRnθ
p/(p−1)
0

[ 1
A0

]pβ/(p−1)

+ c[A0]pβ
∫

BR

(1 + |Du(x)|p) dx

for any 0 < % < R/2, where the constants c depend only on L, p, ν while the
constant c̄ depends also on ε.

�
�������
. Also this result is based on a standard approximation argument similar

to the one employed in Proposition 4.2; it easily follows from [11] and Proposition 5.1.

See also [8]. �

Step 3. We are ready to deal with the main part of the proof of Theorem 2.9.

• Freezing
In the previous sections we remarked that if u is a local minimizer of (1.1) in K,

then it is possible to apply Theorem 3.2 and get that Du ∈ Lp+δ(Ω) for some
δ ≡ δ(p, L) > 0.
Now let us fix any R > 0 and any x0 ∈ B4R, where B4R ⊂⊂ Ω. For any z ∈ � n

we set

h(z) := f(x0, (u)R, z),

H0(w,BR) :=
∫

BR

h(Dw(x)) dx =
∫

BR

f(x0, (u)R, Dw(x)) dx.(5.3)

Let v be a local minimizer of the functional (5.3) in the Dirichlet class {v ∈ K : v ∈
u+W 1,p

0 (BR)}. We immediately notice that the function h(z) := f(x0, (u)R, z) sat-
isfies the assumption of Proposition 3.3, so it follows that there exist two constants c,
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r̄ both depending on p, L and independent of R and u, such that p < r̄ < p(1 + δ)
and

( ∫

BR

|Dv(x)|r̄ dx
)p/r̄

6 c

[∫

B2R

(1 + |Du(x)|p(1+δ)) dx
]1/(1+δ)

(5.4)

+c
[∫

B2R

(1 + |Dψ(x)|p(1+δ)) dx
]1/(1+δ)

.

Since u is a local minimizer of the functional (1.1) in K, we obtain

H0(u) 6 H0(v) +
∫

BR

f(x, v(x), Dv(x)) dx−
∫

BR

f(x, u(x), Dv(x)) dx(5.5)

+
∫

BR

f(x, u(x), Dv(x)) dx−
∫

BR

f(x0, u(x), Dv(x)) dx

+
∫

BR

f(x0, u(x), Dv(x)) dx−
∫

BR

f(x0, (u)R, Dv(x)) dx

+
∫

BR

f(x0, (u)R, Du(x)) dx−
∫

BR

f(x0, u(x), Du(x)) dx

+
∫

BR

f(x0, u(x), Du(x)) dx−
∫

BR

f(x, u(x), Du(x)) dx

= H0(v) + I + II + III + IV + V.

• Bounds for the quantities I, II, . . . , V
We now estimate the quantities I, II, . . . , V .

I 6 L

∫

BR

ω(|v(x)− u(x)|)(µ2 + |Dv(x)|2)p/2 dx

6 c

[∫

BR

(µ2 + |Dv(x)|2)r̄/2 dx
]p/r̄[∫

BR

ωr̄/(r̄−p)(|v(x)− u(x)|) dx
](r̄−p)/r̄

6 cRn
[ ∫

BR

(1 + |Dv(x)|r̄) dx
]p/r̄[ ∫

BR

ωr̄/(r̄−p)(|v(x) − u(x)|) dx
](r̄−p)/r̄

(5.4)

6 cRn
[( ∫

B2R

(1 + |Du(x)|p(1+δ)) dx
)1/(1+δ)

+R(λ−n)/(1+δ)

]

×
[ ∫

BR

ω(|v(x) − u(x)|) dx
](r̄−p)/r̄
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(3.5)

6 cRn
[ ∫

B4R

(1 + |Du(x)|p) dx+R(λ−n)/(1+δ)

]

×
[∫

BR

ω(|v(x)− u(x)|) dx
](r̄−p)/r̄

6 cωσ
( ∫

BR

|v(x)− u(x)| dx
)[∫

B4R

|Du(x)|p dx+R(λ+nδ)/(1+δ)

]

where σ := (r̄ − p)/r̄. We set

λ1 :=
λ+ nδ

1 + δ

and notice that λ1 > λ so that Rλ1 6 Rλ. Now, using the Poincaré inequality and
the Caccioppoli inequality for local minimizers with obstacle (3.6), we have

ωσ
( ∫

BR

|v(x) − u(x)| dx
)

6 ωσ
(
R

∫

BR

|Dv(x) −Du(x)| dx
)

6 ωσ
[(
Rp

∫

BR

|Dv(x)−Du(x)|p dx
)1/p]

6 ωσ
[(
Rp

∫

BR

(1 + |Du(x)|p) dx
)1/p]

(3.6)

6 ωσ
{[
cRp

( ∫

B2R

∣∣∣u(x)− (u)2R
R

∣∣∣
p

dx+
∫

B2R

(1 + |Dψ(x)|p) dx
)]1/p}

6 ωσ
{[
cRp

∫

B2R

∣∣∣u(x)− (u)2R
R

∣∣∣
p

dx
]1/p

+ cR

[∫

B2R

(1 + |Dψ(x)|)q dx
]1/q}

(3.16)

6 cωσ
{[
Rp

( [u]pγR
pγ

Rp

)]1/p

+R(Rλ−n)1/q
}

6 c(p)ωσ[[u]γRγ +R(q+λ−n)/q ] 6 c(p, γ)ωσ(Rm̃),

where m̃ := min{γ, (q + λ− n)/q}; we notice that, as we choose λ > n− p, we have
m̃ > 0. So, finally

I 6 c(p, γ)ωσ(Rm̃)
[∫

B4R

|Du(x)|p dx+Rλ1

]
.

Now, using the minimality of v, we get

III 6 L

∫

BR

ω(|u(x)−(u)R|)(µ2+|Dv(x)|2)p/2 dx 6 c(L)ω(Rγ)
∫

BR

(1+|Du(x)|p) dx.
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In a similar way we estimate IV :

IV 6 L

∫

BR

ω(|u(x)−(u)R|)(µ2+|Du(x)|2)p/2 dx 6 c(L)ω(Rγ)
∫

BR

(1+|Du(x)|p) dx.

On the other hand,

II 6 L

∫

BR

ω(|x− x0|)(µ2 + |Dv(x)|2)p/2 dx 6 c(L)ω(R)
∫

BR

(1 + |Du(x)|p) dx;

also the estimate of V is immediate:

V 6 L

∫

BR

ω(|x− x0|)(µ2 + |Du(x)|2)p/2 dx 6 c(L)ω(R)
∫

BR

(1 + |Du(x)|p) dx.

Collecting the previous bounds and summing them up we get

(5.6) I + II + III + IV + V 6 c(L)ωσ(Rm̃)
[∫

B4R

|Du(x)|p dx+Rλ1

]
.

• Applying Ekeland’s variational principle
At this point, by the minimality of v, we obtain from (5.5) and (5.6)

H0(u) 6 inf
V
H0 +H(R),

where we set

H(R) := c(L)ωσ(Rm̃)
[∫

B4R

|Du(x)|p dx+Rλ1

]

and

V := {v ∈ u+W 1,1
0 (BR) : v ∈ K}.

Now we are in the position to apply Theorem 1 in [7]. Let us consider V equipped
with the distance

d(w1, w2) := H(R)−1/pR−n(p−1)/p

∫

BR

|Dw1(x) −Dw2(x)| dx.

It is easy to see that the functional H0 is lower semicontinuous with respect to the
topology induced by the distance d. Then by Theorem 1 in [7], it follows that there

exists v0 ∈ V such that
(i)

∫
BR

|Du(x)−Dv0(x)| dx 6 [H(R)]1/pRn(p−1)/p,

(ii) H0(v0) 6 H0(u),
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(iii) v0 is a local minimizer in V of the functional

w 7→ H(w) := H0(w) +
[H(R)
Rn

](p−1)/p
∫

BR

|Dw −Dv0| dx.

Working exactly as in [8], we get for v0 the estimates

L−1

∫

BR

|Dv0(x)|p dx 6 H0(v0) 6 H0(u) 6 L

∫

BR

(1 + |Du(x)|p) dx,(5.7)

( ∫

BR/2

|Dv0(x)|s dx
)p/s

6 c

∫

BR

|Dv0(x)|p dx+ c
(
1 +

H(R)
Rn

)
,(5.8)

where s ∈ (p, p(1 + δ)); the latter estimate is a higher integrability result for v0: in

fact, from (i), (ii) and (iii) of Ekeland’s variational principle we can prove that v0 is
also a local quasi-minimizer of a suitable functional with standard growth.

• Comparison and conclusion
Now we are ready to apply Proposition 5.2 to the function h(z) := f(x0, (u)R, z)

and to the functional

H(w,BR) := H0(w,BR) +
[H(R)
Rn

](p−1)/p
∫

BR

|Dw(x) −Dv0(x)| dx.

We choose A0 = F (R) := ωσ(Rm̃) in Proposition 5.2, so, using the property (i) given
by Ekeland’s variational principle, we have for every β > 0 and any ε > 0

∫

B%

|Dv0(x)|p dx 6 c
[( %
R

)n
+ ε

] ∫

BR

(1 + |Dv0(x)|p) dx

+ c[F (R)]pβ
∫

BR

(1 + |Du(x)|p) dx

+ cH(R) + cH(R)[F (R)]pβ/(1−p) + c̄Rλ

where the constants c depend only on L, p, ν while the constant c̄ depends also on ε.
Now, for a suitable choice of β and using (5.7), we can say that

∫

B%

|Dv0(x)|p dx 6 c
[( %
R

)n
+ [F (R)]pβ + ε

] ∫

B4R

(1 + |Du(x)|p) dx+ c̄Rλ.
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So summing up, we have for any ε > 0
∫

B%

|Du(x)|p dx 6 c

∫

B%

|Dv0(x)|p dx+ c

∫

B%

|Du(x)−Dv0(x)|p dx

6 c
[( %
R

)n
+ [F (R)]pβ + ε

] ∫

B4R

|Du(x)|p dx

+ c̄Rλ + c

∫

BR/2

|Du(x)−Dv0(x)|p dx,

where c ≡ c(L, p, ν) and c̄ ≡ c̄(L, p, ν, ε).
In order to complete the proof we have to estimate the last term of the previous

formula. We choose θ ∈ (0, 1) such that θ/s + 1 − θ = 1/p where s is the higher
integrability exponent of v0. As s ∈ (p, p(1 + δ)), we get

∫

BR/2

|Du(x)−Dv0(x)|p dx

6 cRn
( ∫

BR/2

|Du(x)−Dv0(x)|s dx
)θp/s

×
( ∫

BR/2

|Du(x)−Dv0(x)| dx
)(1−θ)p

(i)

6 cRn[H(R)1/pR−n/p](1−θ)p

×
[( ∫

BR/2

|Du(x)|s dx
)θp/s

+
( ∫

BR/2

|Dv0(x)|s dx
)θp/s]

(5.7),(5.8)

6 cRnθ[H(R)](1−θ)

×
[( ∫

BR/2

|Du(x)|p(1+δ) dx
)θ/(1+δ)

+
( ∫

B4R

|Du(x)|p dx+Rλ1−n
)θ]

(3.5)

6 cRnθ[H(R)](1−θ)
( ∫

B4R

|Du(x)|p dx+Rλ1−n
)θ

6 cF (R)(1−θ)
[∫

B4R

|Du(x)|p dx+Rλ1

]
.

Now we can insert this estimate into the previous one and get for any 0 < % < R/8
and for any ε > 0
∫

B%

|Du(x)|p dx 6 c
[( %
R

)n
+ [F (R)]pβ + [F (R)](1−θ) + ε

] ∫

B4R

|Du(x)|p dx+ c̄Rλ

where the constant c depends only on p, L, ν while the constant c̄ depends also on ε.

Using Lemma 3.4 and the fact that lim
R→0

[F (R)]pβ +[F (R)](1−θ) = 0, we can choose a
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radius R1 ≡ R1(p, L, ν) > 0 and a constant ε0 > 0 such that [F (R)]pβ+[F (R)](1−θ) 6
ε0/2 whenever 0 < R < 16R1; so if also ε 6 ε0/2, we may conclude that

∫

B%

|Du(x)|p dx 6 c̄%λ

with c̄ ≡ c̄(p, L, ν, ε) whenever 0 < % < R1, a fact which we may assume without loss

of generality. This allows us to conclude that Du ∈ Lp,λloc (Ω). �
�������	��


5.3. If one takes q̃ sufficiently small such that p < q̃ < p(1 + δ), where
δ is the higher integrability exponent obtained for Du in the proof of Theorem 2.9,
then a higher integrability result

∫

B%

|Du(x)|q̃ dx 6 c

( ∫

B2%

|Du(x)|p dx
)̃q/p

+ c

∫

B2%

(|Dψ(x)|q̃ + 1) dx

can be obtained (in the same way as in the proof of Theorem 3.2). This inequality
implies

%−λ
∫

B%

|Du(x)|q̃ dx

6 c%−λ
( ∫

B2%

|Du(x)|p dx
)̃q/p

+ c%−λ
∫

B2%

(|Dψ(x)|q̃ + 1) dx

6 c

[
%−λ(p/q̃)

∫

B2%

|Du(x)|p dx
]q̃/p

+ c%−λ
∫

B2%

(|Dψ(x)|q̃ + 1) dx

6 c

[
%λ(1−p/q̃)%−λ

∫

B2%

|Du(x)|p dx
]q̃/p

+ c%−λ
∫

B2%

(|Dψ(x)|q̃ + 1) dx

6 c%λ(q̃−p)/p
[
%−λ

∫

B2%

|Du(x)|p dx
]q̃/p

+ c%−λ
∫

B2%

(|Dψ(x)|q̃ + 1) dx;

at this point, if Dψ satisfies (2.5), i.e. if Dψ ∈ Lq,λloc (Ω), then certainly Dψ ∈ Lq̃,λloc (Ω)
and therefore, by virtue of the estimates just obtained, alsoDu ∈ Lq̃,λloc (Ω) as q̃/p > 1.
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6. Proof of Theorem 2.11

Let u be a local minimizer of the functional (1.1) in K; we fix a radius R > 0 and
any x0 ∈ B4R; let v ∈ u+W 1,p

0 (BR) be a local minimizer in K of the functional H0

introduced in (5.3). Moreover, let z be the solution of the minimum problem

(6.1) min{H0(z,BR) : z ∈ u+W 1,p
0 (BR)}.

Then, using estimates (2.4) and (2.5) in [17], we can easily obtain for all 0 < % < R/2

∫

B%

|Dz(x)− (Dz)%|p dx =
∫

B%

∣∣∣∣
∫

B%

(Dz(x)−Dz(y)) dy
∣∣∣∣
p

dx

6
[

sup
x,y∈B%

|Dz(x)−Dz(y)|
]p

6
[
c
( %
R

)β
sup
BR/2

|Dz|
]p

6 c
( %
R

)βp ∫

BR

(1 + |Dz(x)|p) dx,

where c > 0, 0 < β < 1 and both c and β depend only on p, L.
Our aim now is to compare z and w. First of all, using the minimality of z, we

have ∫

BR

|Dz(x)|p dx 6 c(L)
∫

BR

(1 + |Dw(x)|p) dx.

On the other hand, Theorem 2.6 implies

Dψ ∈ Lp,λ(Ω) ⇒ Dψ ∈ C0,α(Ω)

where α = (λ− n)/p. At this point, if p > 2 then it is not difficult to see that

|A(Dψ(x)) −A(Dψ(y))| 6 c|x− y|α, ∀x, y ∈ Ω.

Therefore we can estimate
∫

BR

|Dw(x) −Dz(x)|p dx

6
∫

BR

(1 + |Dw(x)|2 + |Dz(x)|2)(p−2)/2|Dw(x) −Dz(x)|2 dx

6
∫

BR

〈A(Dw(x)) −A(Dz(x)), Dw(x) −Dz(x)〉 dx

(4.4)
=

∫

BR

〈A(Dw(x)), Dw(x) −Dz(x)〉 dx
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(4.1)
=

∫

BR

〈A(Dψ(x)), Dw(x) −Dz(x)〉 dx

=
∫

BR

〈A(Dψ(x)) − (A(Dψ))R, Dw(x) −Dz(x)〉 dx

6
∫

BR

|A(Dψ(x)) − (A(Dψ))R| · |Dw(x) −Dz(x)| dx

6 c(L)Rα
∫

BR

(|Dw(x)|p + 1) dx.

On the other hand, if 1 < p < 2 we can easily prove that

(6.2) |A(Dψ(x)) −A(Dψ(y))| 6 c|x− y|α(p−1), ∀x, y ∈ Ω,

where again α = (λ− n)/p. This allows us to conclude that
∫

BR

|Dw(x) −Dz(x)|p dx

6
(∫

BR

(1 + |Dw(x)|2 + |Dz(x)|2)(p−2)/2|Dw(x) −Dz(x)|2 dx
)1/2

×
(∫

BR

(1 + |Dw(x)|2 + |Dz(x)|2)(2−p)/2|Dw(x) −Dz(x)|2p−2 dx
)1/2

6 c(L)
[∫

BR

〈A(Dψ(x)) − (A(Dψ))R, Dw(x) −Dz(x)〉 dx
]1/2

×
(∫

BR

(1 + |Dw(x)|p) dx
)1/2

6 c(L)R
1
2α(p−1)

∫

BR

(1 + |Dw(x)|p) dx.

So in both cases we deduce
∫

BR

|Dw(x) −Dz(x)|p dx 6 c(L)R
1
2α(p−1)

∫

BR

(1 + |Dw(x)|p) dx.

Moreover, using (3.2), (3.3) and (4.1) we are able to deduce

∫

BR

|Dw(x)|p dx
(3.2)

6 1
ν

∫

BR

〈A(Dw(x)), Dw(x)〉 dx+ cRn

(4.1)

6 1
ν

∫

BR

〈A(Dw(x)), Dv(x)〉 dx

+
1
ν

∫

BR

〈A(Dψ(x)), Dw(x) −Dv(x)〉 dx+ cRn
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(3.3)

6 L

ν

∫

BR

(|Dw(x)|p−1 + 1)|Dv(x)| dx

+
1
ν

∫

BR

〈A(Dψ(x)), Dw(x)〉 dx

− 1
ν

∫

BR

〈A(Dψ(x)), Dv(x)〉 dx+ cRn

6 1
4

∫

BR

|Dw(x)|p dx+ c

∫

BR

|Dv(x)|p dx

+
1
ν

∫

BR

〈A(Dψ(x)) − (A(Dψ))R, Dw(x)〉 dx

− 1
ν

∫

BR

〈A(Dψ(x)) − (A(Dψ))R, Dv(x)〉 dx+ cRn

6 1
4

∫

BR

(|Dw(x)|p + 1) dx+ c

∫

BR

(|Dv(x)|p + 1) dx+ cRn

where we have used (6.2) which is valid for all p > 1 and where the constants c may
depend on L, p, α, ν. Thus we obtain

∫

BR

|Dw(x)|p dx 6 c(L, p, α, ν)
∫

BR

(|Dv(x)|p + 1) dx.

Moreover, working as in the previous case, it is not difficult to deduce for all p > 1

(6.3)
∫

BR

|Dv(x) −Dw(x)|p dx 6 c(L, p, α, ν)R
1
2α(p−1)

∫

BR

(|Dv(x)|p + 1) dx.

Now it is time to compare u and v. Proceeding as in the proof of Theorem 2.9 and

using the assumption (2.7), we obtain

H0(u)−H0(v) 6 c(L)ωσ(Rm̃)
∫

B4R

(|Du(x)|p+1) dx 6 c(L)Rζ
∫

B4R

(|Du(x)|p+1) dx

where ζ ≡ ζ(γ, σ, ξ, λ, p) and γ, σ were introduced in the previous section. Arguing
in a standard way, we immediately have

(6.4)
∫

BR

|Du(x)−Dv(x)|p dx 6 c(L)Rζ/2
∫

B4R

(|Du(x)|p + 1) dx,

which holds for all p > 1. Thus, summing up and setting

M := min
{1

2
α(p− 1),

1
2
ζ
}
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we have for any 0 < % < R/2
∫

B%

|Du(x)− (Du)%|p dx 6
∫

B%

|Dv(x) − (Dv)%|p dx+
∫

B%

|Du(x)−Dv(x)|p dx

6
∫

B%

|Dw(x) − (Dw)%|p dx+
∫

BR

|Dv(x) −Dw(x)|p dx

+
∫

BR

|Du(x)−Dv(x)|p dx

6
∫

B%

|Dz(x)− (Dz)%|p dx+
∫

B%

|Dw(x) −Dz(x)|p dx

(6.3),(6.4)
+ c(L, p, α, ν)

(
R

1
2α(p−1) +R

1
2 ζ

)∫

B4R

(|Du(x)|p + 1) dx

6 %n
∫

B%

|Dz(x)− (Dz)%|p dx+ c(L, p, α, ν)RM
∫

B4R

(|Du(x)|p + 1) dx

6 c(p, L)
( %
R

)βp( %
R

)n ∫

BR

(1 + |Dz(x)|p) dx+ c(L, p, α, ν)RM

×
∫

B4R

(|Du(x)|p + 1) dx

6 c(L, p, α, ν)
[( %
R

)βp+n ∫

BR

(1 + |Dv(x)|p) dx+RM
∫

B4R

(|Du(x)|p + 1) dx
]

6 c(L, p, α, ν)
[( %
R

)βp+n
+RM

] ∫

B4R

(|Du(x)|p + 1) dx.

On the other hand, using Theorem 3.1 we immediately get
∫

B%

|Du(x)|p dx 6 c(L, p)
[( %
R

)n
+RM

] ∫

B4R

(|Du(x)|p + 1) dx;

then, by a standard iteration lemma, we are able to infer the existence of a radius R0

such that for all R 6 R0 ∫

BR

|Du(x)|p dx 6 cRn−τ

for all 0 < τ < 1. For our purposes, we can choose any τ < pβM/(n + pβ), for
example τ := 1

2pβM/(n + pβ). At this point we choose % such that % = 1
2R

1+θ

where θ := M/(n+ βp). With such a choice of %, θ and τ , we have

(6.5)
∫

B%

|Du(x)− (Du)%|p dx 6 c(L, p, α, ν)%λ̃

where

λ̃ := n+
pβM

2(n+ pβ +M)
.
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However, the choice of R was arbitrary, so without loss of generality we may assume

that (6.5) holds for all 0 < % 6 R0. This yields the result. �
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