[1] J. Aczél, Z. Daróczy:
Charakterisierung der Entropien positiver Ordnung und der Shannonschen Entropie. Acta Math. Acad. Sci. Hungar. 14 (1963), 95–121. (German)
DOI 10.1007/BF01901932 |
MR 0191738
[2] J. Aczél, Z. Daróczy:
On Measures of Information and Their Characterizations. Academic Press, New York-San Francisco-London, 1975.
MR 0689178
[3] M. Behara, P. Nath:
Additive and non-additive entropies of finite measurable partitions. Probab. Inform. Theory II. Lect. Notes Math. Vol. 296, Springer-Verlag, Berlin-Heidelberg-New York, 1973, pp. 102–138.
MR 0379019
[6] Z. Daróczy, A. Jarai:
On the measurable solutions of functional equation arising in information theory. Acta Math. Acad. Sci. Hungar. 34 (1979), 105–116.
DOI 10.1007/BF01902599 |
MR 0546725
[7] Z. Daróczy, L. Losonczi:
Über die Erweiterung der auf einer Punktmenge additiven Funktionen. Publ. Math. 14 (1967), 239–245. (German)
MR 0240492
[8] K. K. Gulati:
Some functional equations connected with entropy. Bull. Calcutta Math. Soc. 80 (1988), 96–100.
MR 0956797 |
Zbl 0654.39004
[9] J. Havrda, F. Charvát:
Quantification method of classification process. Concept of structural $\alpha $-entropy. Kybernetika 3 (1967), 30–35.
MR 0209067
[11] Pl. Kannappan:
On a generalization of some measures in information theory. Glas. Mat., III. Sér. 9 (1974), 81–93.
MR 0363671 |
Zbl 0287.39006
[14] L. Losonczi, Gy. Maksa:
On some functional equations of the information theory. Acta Math. Acad. Sci. Hungar. 39 (1982), 73–82.
DOI 10.1007/BF01895217 |
MR 0653676
[17] C. E. Shannon:
A mathematical theory of communication. Bell Syst. Tech. Jour. 27 (1948), 378–423, 623–656.
MR 0026286 |
Zbl 1154.94303
[18] I. Vajda:
Bounds on the minimal error probability on checking a finite or countable number of hypotheses. Probl. Inf. Transm. 4 (1968), 9–19.
MR 0267685