Article
Keywords:
density theorems; finite element method
Summary:
We present a detailed proof of the density of the set $C^\infty (\overline{\Omega })\cap V$ in the space of test functions $V\subset H^1(\Omega )$ that vanish on some part of the boundary $\partial \Omega $ of a bounded domain $\Omega $.
References:
[2] O. V. Besov:
On some families of functional spaces. Imbedding and continuation theorems. Doklad. Akad. Nauk SSSR 126 (1959), 1163–1165. (Russian)
MR 0107165 |
Zbl 0097.09701
[3] P. G. Ciarlet:
The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978.
MR 0520174 |
Zbl 0383.65058
[4] P. Doktor:
On the density of smooth functions in certain subspaces of Sobolev space. Commentat. Math. Univ. Carol. 14 (1973), 609–622.
MR 0336317 |
Zbl 0268.46036
[5] A. Kufner, O. John, and S. Fučík:
Function Spaces. Academia, Praha, 1977.
MR 0482102
[6] P. I. Lizorkin:
Boundary properties of functions from “weight” classes. Sov. Math. Dokl. 1 (1960), 589–593.
MR 0123103 |
Zbl 0106.30802
[7] J. Nečas:
Les méthodes directes en théorie des équations elliptiques. Academia, Praha, 1967.
MR 0227584
[8] V. I. Smirnov: A Course in Higher Mathematics V. Gosudarstvennoje izdatelstvo fiziko-matematičeskoj literatury, Moskva, 1960. (Russian)
[9] S. V. Uspenskij:
An imbedding theorem for S. L. Sobolev’s classes $W_p^r$ of fractional order. Sov. Math. Dokl. 1 (1960), 132–133.
MR 0124731
[10] A. Ženíšek: Sobolev Spaces and Their Applications in the Finite Element Method. VUTIUM, Brno, 2005.