[1] M. Ainsworth, P. Coggins:
A uniformly stable family of mixed $hp$-finite elements with continuous pressures for incompressible flow. IMA J. Numer. Anal. 22 (2002), 307–327.
DOI 10.1093/imanum/22.2.307 |
MR 1897411
[2] C. Bernardi, F. Hecht:
More pressure in the finite element discretization of the Stokes problem. M2AN, Math. Model. Numer. Anal. 34 (2000), 953–980.
DOI 10.1051/m2an:2000111 |
MR 1837763
[3] J. Boland, R. Nicolaides:
Stability of finite elements under divergence constraints. SIAM J. Numer. Anal. 20 (1983), 722–731.
DOI 10.1137/0720048 |
MR 0708453
[4] F. Brezzi, M. Fortin:
Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York, 1991.
MR 1115205
[5] P. G. Ciarlet:
Basic error estimates for elliptic problems. In: Handbook of Numerical Analysis, Vol. II: Finite Element Methods (Part 1), P. G. Ciarlet, J.-L. Lions (eds.), North-Holland, Amsterdam, 1991, pp. 17–351.
MR 1115237 |
Zbl 0875.65086
[6] M. Crouzeix, P.-A. Raviart:
Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. Rev. Franc. Automat. Inform. Rech. Operat. 7 (1973), 33–76.
MR 0343661
[8] V. Girault, P.-A. Raviart:
Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin, 1986.
MR 0851383
[9] V. John: Parallele Lösung der inkompressiblen Navier-Stokes Gleichungen auf adaptiv verfeinerten Gittern. PhD. Thesis, Otto-von-Guericke-Universität, Magdeburg, 1997.
[10] V. John, P. Knobloch, G. Matthies, L. Tobiska:
Non-nested multi-level solvers for finite element discretisations of mixed problems. Computing 68 (2002), 313–341.
DOI 10.1007/s00607-002-1444-2 |
MR 1921254
[11] P. Knobloch:
On the application of the $P_1^{\mathop {\mathrm mod}}$ element to incompressible flow problems. Comput. Visual. Sci. 6 (2004), 185–195.
DOI 10.1007/s00791-004-0127-2 |
MR 2071439
[12] P. Knobloch:
New nonconforming finite elements for solving the incompressible Navier-Stokes equations. In: Numerical Mathematics and Advanced Applications. Proceedings of ENUMATH 2001, F. Brezzi et al. (eds.), Springer-Verlag Italia, Milano, 2003, pp. 123–132.
MR 2360713 |
Zbl 1283.76033
[13] P. Knobloch:
On the inf-sup condition for the $P_3^{\mathop {\mathrm mod}}/P_2^{\mathrm disc}$ element. Computing 76 (2006), 41–54.
MR 2174350
[14] P. Knobloch, L. Tobiska:
The $P_1^{\mathop {\mathrm mod}}$ element: A new nonconforming finite element for convection-diffusion problems. SIAM J. Numer. Anal. 41 (2003), 436–456.
DOI 10.1137/S0036142902402158 |
MR 2004183
[15] F. Schieweck:
Parallele Lösung der stationären inkompressiblen Navier-Stokes Gleichungen. Habilitationsschrift, Otto-von-Guericke-Universität, Magdeburg, 1997. (German)
Zbl 0915.76051
[16] L. R. Scott, M. Vogelius:
Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO, Modélisation Math. Anal. Numér. 19 (1985), 111–143.
DOI 10.1051/m2an/1985190101111 |
MR 0813691
[17] R. Stenberg:
Analysis of mixed finite element methods for the Stokes problem: a unified approach. Math. Comput. 42 (1984), 9–23.
MR 0725982 |
Zbl 0535.76037
[18] S. Turek:
Efficient Solvers for Incompressible Flow Problems. An Algorithmic and Computational Approach. Springer-Verlag, Berlin, 1999.
MR 1691839 |
Zbl 0930.76002