[1] T. Apel:
Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numer. Math. B. G. Teubner, Leipzig, 1999.
MR 1716824
[4] O. Axelsson, V. A. Barker:
Finite Element Solution of Boundary Value Problems. Theory and Computation. Academic Press, Orlando, 1984.
MR 0758437
[5] M. Bern, P. Chew, D. Eppstein, and J. Ruppert:
Dihedral bounds for mesh generation in high dimensions. Proc. of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms (San Francisco, CA, 1995), SIAM, Philadelphia, 1995, pp. 189–196.
MR 1321850
[6] F. Bornemann, B. Erdmann, and R. Kornhuber:
Adaptive multilevel methods in three space dimensions. Int. J. Numer. Methods Eng. 36 (1993), 3187–3203.
DOI 10.1002/nme.1620361808 |
MR 1236370
[8] L. Collatz:
Numerische Behandlung von Differentialgleichungen. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1951.
MR 0043563 |
Zbl 0054.05101
[12] M. Dauge:
Elliptic Boundary Value Problems on Corner Domains. Lect. Notes Math., Vol. 1341. Springer-Verlag, Berlin, 1988.
MR 0961439
[13] M. Feistauer, J. Felcman, M. Rokyta, and Z. Vlášek:
Finite-element solution of flow problems with trailing conditions. J. Comput. Appl. Math. 44 (1992), 131–165.
DOI 10.1016/0377-0427(92)90008-L |
MR 1197680
[14] G. Fichera:
Numerical and Quantitative Analysis. Surveys and Reference Works in Mathematics, Vol. 3. Pitman (Advanced Publishing Program), London-San Francisco-Melbourne, 1978.
MR 0519677
[15] H. Fujii:
Some remarks on finite element analysis of time-dependent field problems. Theory Pract. Finite Elem. Struct. Analysis, Univ. Tokyo Press, Tokyo, 1973, pp. 91–106.
Zbl 0373.65047
[16] B. Q. Guo:
The $h$-$p$ version of the finite element method for solving boundary value problems in polyhedral domains. Boundary Value Problems and Integral Equations in Nonsmooth Domains (Luminy, 1993). Lect. Notes Pure Appl. Math., Vol. 167, M. Costabel, M. Dauge, and C. Nicaise (eds.), Marcel Dekker, New York, 1995, pp. 101–120.
MR 1301344 |
Zbl 0855.65114
[21] M. Křížek, L. Liu:
On the maximum and comparison principles for a steady-state nonlinear heat conduction problem. Z. Angew. Math. Mech. 83 (2003), 559–563.
DOI 10.1002/zamm.200310054 |
MR 1994036
[22] M. Křížek, Qun Lin:
On diagonal dominance of stiffness matrices in 3D. East-West J. Numer. Math. 3 (1995), 59–69.
MR 1331484
[25] M. Picasso:
Numerical study of the effectivity index for an anisotropic error indicator based on Zienkiewicz-Zhu error estimator. Commun. Numer. Methods Eng. 19 (2003), 13–23.
DOI 10.1002/cnm.546 |
MR 1952014 |
Zbl 1021.65052
[28] H. Schmitz, K. Volk, and W. Wendland:
Three-dimensional singularities of elastic fields near vertices. Numer. Methods Partial Differ. Equations 9 (1993), 323–337.
DOI 10.1002/num.1690090309 |
MR 1216118
[29] R. S. Varga:
Matrix iterative analysis. Prentice-Hall, New Jersey, 1962.
MR 0158502