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Abstract. Linear tetrahedral finite elements whose dihedral angles are all nonobtuse
guarantee the validity of the discrete maximum principle for a wide class of second order
elliptic and parabolic problems. In this paper we present an algorithm which generates
nonobtuse face-to-face tetrahedral partitions that refine locally towards a given Fichera-like
corner of a particular polyhedral domain.
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1. Introduction

Linear tetrahedral finite elements are commonly used for solving elliptic and

parabolic problems. The structure and properties of the associated stiffness ma-
trices essentially depend on the dihedral angles between the faces of those elements.

In order to see this, let us consider an arbitrary tetrahedron ABCD. Let p and q be
two linear nodal basis functions such that

p(A) = 1, p(B) = p(C) = p(D) = 0,

q(B) = 1, q(A) = q(C) = q(D) = 0.

* The first author was supported by the Swedish Foundation for Strategic Research, the
second author was supported by Grant No. 49051 of the Academy of Finland, the third
author was supported by Grant No. A 1019201 of the Academy of Sciences of the Czech
Republic and by Institutional Research Plan AV0Z 10190503.
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Then a straightforward calculation leads to the following formula (see [22, p. 63])

(1.1) ∇p · ∇q = −meas2 ACD meas2 BCD

9(meas3 ABCD)2
cosα,

where α is the angle between the faces ACD and BCD (see Fig. 1) and the sym-
bol measd stands for the d-dimensional measure. The scalar product in (1.1) is

independent of all the other 5 dihedral angles. If α > π/2, then the scalar product
in (1.1) is obviously positive. Hence, each obtuse dihedral angle of the tetrahe-

dron ABCD gives a positive contribution to the corresponding off-diagonal entry of
the element (and also global) stiffness matrix, when solving the Poisson problem.

A

B

C

D

α

Figure 1. A general tetrahedron whose two faces include the angle α.

Note that the same is also true for a wide class of nonlinear elliptic problems of

the form (see [22])

−∇ · (λ(x, u,∇u)∇u) = f(x) in Ω,(1.2)

u = 0 on ∂Ω,(1.3)

where λ is a uniformly positive smooth function and Ω is a bounded polyhedral
domain with a Lipschitz-continuous boundary ∂Ω. Equations (1.2)–(1.3) describe,
for instance, a stationary nonlinear heat conduction or fluid flow problems.

Recall that a tetrahedron is said to be nonobtuse if all six dihedral angles between
its faces are less than or equal to π/2. In this paper, we shall use only face-to-face
tetrahedral partitions of Ω, which are called, for simplicity, partitions. A partition
is said to be nonobtuse if it only contains nonobtuse tetrahedra.

According to [22], linear elements applied to problem (1.2)–(1.3) on nonobtuse par-
titions yield irreducibly diagonally dominant stiffness matrices (whose off-diagonal

entries are all nonpositive). It is well known (see [8, Chapt. II.4.3] or [29, p. 85]) that
such matrices are monotone. This makes it possible to prove easily L∞-convergence
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of the finite element method like in [13], where a two-dimensional nonlinear prob-

lem was solved on nonobtuse triangulations. Nonobtuse tetrahedral partitions also
guarantee the validity of the discrete maximum principle for problem (1.2)–(1.3),
i.e., we have uh 6 0 provided f 6 0, where uh is the unique Galerkin approximation

(see [22]) of the solution of (1.2)–(1.3). In other words, uh attains its maximum
on the boundary ∂Ω if homogeneous Dirichlet boundary conditions and nonpositive
right-hand sides are considered. For results on the validity of the discrete maximum
principle for parabolic problems on nonobtuse simplicial meshes, we refer to [15].

In [18], we gave a global refinement procedure yielding nonobtuse tetrahedra over
the whole domain. However, this technique requires a large amount of computer

time and memory to store the associated stiffness matrix. Therefore, in the present
paper we introduce a local partitioning procedure yielding nonobtuse partitions that

refine only near a particular vertex, where a singularity of the exact solution may
appear (see [12], [28]). Note that the standard red-green refinement techniques (see,

e.g., [6], [20], [23], [24], [27]) do not yield nonobtuse partitions in general, since they
use bisections. Other local refinement algorithms proposed in [7] and [16] do not pro-

duce nonobtuse tetrahedra either. Several mesh refinement strategies of anisotropic
meshes (see [2], [3]) or refinement techniques based on Zienkiewicz-Zhu estimator

(see [25], [26]) also do not yield nonobtuse tetrahedra, and therefore, the discrete
maximum principle need not be valid.

Note also that the discrete maximum principle can be violated for standard trilin-
ear block finite elements (see [21, p. 562]) and also for bilinear rectangular elements

(see [4, p. 254]). This is the reason why simplicial (triangular or tetrahedral) elements
may be preferable.

In Section 2, we recall the definition of a special tetrahedron—a path tetrahedron—
and show how to generate nonobtuse partitions that locally refine near one of its

vertices. In Section 3, we generalize this refinement procedure to a neighborhood of
Fichera-like corners. Section 4 is concerned with several numerical tests.

2. Nonobtuse tetrahedral partitions of a path tetrahedron

Definition 2.1. A tetrahedron is said to be a path tetrahedron if it has three
mutually perpendicular edges which do not pass through the same vertex.

The reason for the name of the above tetrahedron is that its three perpendicular
edges form a “path” (see [5]).

Proposition 2.2. Any path tetrahedron is nonobtuse.
$&%(')'+*

. For the proof see [18, p. 728–729]. �
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A typical example of a path tetrahedron is illustrated in Fig. 2 (all its right angles,

solid and dihedral, are indicated there). The nonitersecting edges AB and CD are

also perpendicular, which means that the three-component vectors
−→
AB and

−→
CD are

orthogonal.

A

B C

D

Figure 2. A path tetrahedron.

Definition 2.3. An infinite set of partitions is said to be regular if there exists
a constant C > 0 such that for any partition T from this set and any tetrahedron
T ∈ T we have

(2.1) meas3 T > C(diam T )3,

where diam T is the diameter of T .

This condition guarantees that tetrahedra do not degenerate, i.e., the so-called
minimum angle condition is fulfilled. The main idea of generating local nonobtuse

tetrahedral partitions is exposed in the following theorem, whose proof is construc-
tive. It is based on Coxeter’s result that each path tetrahedron can be subdivided

into three path tetrahedra (see [11]).

Theorem 2.4. Let ABCD be a path tetrahedron whose edges AB, BC, and CD

are mutually perpendicular. Then there exists an infinite regular set of nonobtuse

partitions of this tetrahedron into path tetrahedra that refine locally ABCD in

a neighborhood of the vertex A.
$&%(')'+*

. Let P be the orthogonal projection of the point B onto the line AC.
Obviously, P lies in the interior of the line segment AC, since ABC is a right triangle.
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Further, let Q be the orthogonal projection of the point P onto the line AD. Since

ACD is a right triangle, APD has an obtuse angle at P , and thus the point Q lies
in the interior of the line segment AD.
We observe that the line segmentBP is perpendicular to the face ACD. Therefore,

BP is perpendicular to any line that is contained in the plane ACD. From this
property we easily find that the original tetrahedron ABCD can be decomposed

into the following three path tetrahedra (see Fig. 3):

BPCD with BP ⊥ PC ⊥ CD ⊥ BP,

BPQD with BP ⊥ PQ ⊥ QD ⊥ BP,

AQPB with AQ ⊥ QP ⊥ PB ⊥ AQ.

A

B C

D

P
Q

Figure 3. Partition of a path tetrahedron ABCD into three path tetrahedra.

Now we decompose the last path subtetrahedron AQPB again into three path
subtetrahedra following the same rules as above. In this way we obtain a tetrahedron

which is similar to the original tetrahedron ABCD, which will later help us to prove
the regularity of the set of partitions.

So, let S be the orthogonal projection of the point Q onto the line AP , and let
T be the orthogonal projection of the point S onto the line AB. Then the path

tetrahedron AQPB can be decomposed into the following three path subtetrahedra
(see Fig. 4):

QSPB with QS ⊥ SP ⊥ PB ⊥ QS,

QSTB with QS ⊥ ST ⊥ TB ⊥ QS,

ATSQ with AT ⊥ TS ⊥ SQ ⊥ AT.
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Figure 4. Partition of the path tetrahedron ABQP into three path tetrahedra.

A

B C

D

P
Q

S
T

Figure 5. Partition of a path tetrahedron ABCD into five path tetrahedra.

Consequently, the five path subtetrahedra BPCD, BPQD, QSPB, QSTB, and

ATSQ form a face-to-face partition of the original path tetrahedron ABCD (see
Fig. 5).

Since S is the orthogonal projection of Q onto the line AC, the line segments QS

and DC are parallel. Similarly we find that TS and BC are parallel, since T is

the orthogonal projection of S onto the line AB. From this we conclude that the
face TSQ is parallel to BCD, and thus, the path subtetrahedron ATSQ is similar
to the original tetrahedron ABCD.

The subtetrahedron ATSQ can be now decomposed into 5 subtetrahedra in a sim-
ilar way (as ABCD), and thus we can get further refinement near the vertex A. By

this recursive procedure, we obtain the required infinite set of face-to-face tetrahe-
dral partitions and condition (2.1) will be satisfied, since any tetrahedron is similar
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to one of the five from Fig. 5. According to Proposition 2.2, each partition from this

set is nonobtuse. �

3. Nonobtuse partitions locally refined near

Fichera-like corners

In [19], we proposed an algorithm for the local nonobtuse tetrahedral partitioning
of a cube in the neighborhood of one of its vertices. If several cubes meet at one point,
then we can apply this algorithm to each one of them so that the whole partition

remains face-to-face. For instance, in Fig. 6 we see local nonobtuse tetrahedral
partitions of the polyhedral domain Ω = (−1, 1)3 \ [0, 1)3, which represents a union
of seven cubes. The concave (reentrant) corner of such a domain is called the Fichera
corner or the Fichera vertex (see, e.g., [1], [2], [3], [14], [19]).

Figure 6. Locally refined nonobtuse partitions of the Fichera domain.

Actually, the algorithm from [19] can also be viewed as the following procedure:
we first divide the cube into six path tetrahedra (cf. Fig. 7b), and further make

a local nonobtuse tetrahedral partition of each of the path tetrahedra towards one
of their two common vertices so that the overall partition of the whole cube always

remains face-to-face.
If the algorithm from [19] is perceived as above, we immediately observe that

the corresponding local partition of a single path tetrahedron coincides with the
partition procedure presented in Section 2, if it is applied to a particular type of path

tetrahedron—when its three mutually perpendicular edges are of the same length.
The comparison of the two above procedures immediately suggests the next gen-

eralization step, leading to a partitioning procedure for more general corners of poly-
hedral domains, which we will refer to as Fichera-like corners. In particular, we
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introduce sufficient conditions which make it possible to generate partitions that

locally refine towards a given vertex A:
(i) Let T1, . . . , Tk be tetrahedra from an initial partition that share a given vertex A

belonging to the longest edge of each Ti, such that

(ii) T1 is a path tetrahedron,
(iii) each Ti is a mirror image of any adjacent tetrahedron Tj with respect to their

common triangular face Ti ∩ Tj , i, j ∈ {1, . . . , k}.
In Fig. 7, we observe three examples of clusters of path tetrahedra satisfying the

above conditions (i)–(iii). Note that in Fig. 7a, the “lower” face is an equilateral
triangle, in Fig. 7b, the cluster of tetrahedra form a cube, and in Fig. 7c, the “rect-

angular” face is a square.

a) b) c)

Figure 7. Clusters of path tetrahedra.

Now, let us consider a regular set of nonobtuse partitions of T1. Its existence is
guaranteed by Theorem 2.4. According to assumptions (i) and (iii), all tetrahedra

adjacent to T1 that share a face with T1 (and hence also share the vertex A) are
mirror images of T1. Therefore, their partitions will be defined as mirror images of
partitions of T1. Similarly, we define partitions of all the other tetrahedra. Obviously,

such a construction preserves the overall face-to-face property of the whole partition.

4. Numerical tests in domains with Fichera-like corners

In this section, we show the performance of the local mesh partitioning procedure
applied to the solution of the Poisson equation with a nonhomogeneous Dirichlet

boundary condition

−∆u = f in Ω,

u = u on ∂Ω,

where u ∈ H1/2(∂Ω) is a given function and f will be defined below (see (4.2)).
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The errors in Tabs. 1 and 3 are L2-norms of the difference between the exact

solution u and the computed finite element solution uh over the domain Ω. The
errors in Tabs. 2 and 4 are H1-seminorms of the difference between the gradients
of u and uh

|u− uh|1 =
(∫

Ω

|∇u−∇uh|2 dx

)1/2

.

In order to calculate the entries of the stiffness matrix and the load vector, we

employ higher order numerical quadrature formulas on tetrahedra from [9], [10], [17],
with 4, 11, and 24 integration points, which are exact for all polynomials of second,

fourth, and sixth order, respectively. The integration points of these formulas are
in the interior of each tetrahedron, which makes it possible to treat singularities at

vertices of the solution itself (see, e.g., Example 4.2, where u(0) = ∞).
We shall consider solutions of the form

(4.1) u(x) =
(√

x2
1 + x2

2 + x2
3

)q

,

where x = (x1, x2, x3) and q is a real number, in the unit sphere. Using the standard

spherical coordinates (r, ϕ, θ) and the substitution theorem, we get for the H1-norm
of u and q > − 1

2 that

‖u‖2
1 =

∫ 1

0

∫ 2 ,

0

∫ ,

0

(r2q + q2r2q−2)r2 sin θ dθ dϕ dr

= 4π
∫ 1

0

(r2q+2 + q2r2q) dr = 4π
( 1

2q + 3
+

q2

2q + 1

)
∈ (0,∞),

and the triple integral is not finite whenever q 6 − 1
2 . The finiteness of ‖u‖1 remains

valid if we replace the unit sphere by the union of several cubes which contain the

origin (0, 0, 0).
The right-hand side f = −∆u corresponding to the solution (4.1) is

(4.2) f(x) = −q(q + 1)
u(x)

x2
1 + x2

2 + x2
3

.

- .0/	1325476
4.1. Let Ω = ((−1, 1)2× (−1, 0))∪ ((0, 1)2× [0, 1)), i.e., Ω is the union

of five unit cubes (see Fig. 8). We set q = 1
2 and take u = u on ∂Ω, where u is given

by (4.1).

nodes elements 4 pts 11 pts 24 pts

22 30 0.0533061 0.0577743 0.0579317
84 265 0.0153702 0.0162520 0.0162535

115 385 0.0153585 0.0162387 0.0162401
146 505 0.0153585 0.0162387 0.0162401

Table 1. L2-norm of the error for Example 4.1.
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Figure 8. Local mesh partition of five cubes forming a Fichera-like corner after three re-
finement steps. The left figure only shows surface lines.

Figure 9. The solution of the Poisson equation for Example 4.1. A contour fill of uh on
a three times refined mesh is shown.

nodes elements 4 pts 11 pts 24 pts

22 30 0.958325 1.028670 1.038700
84 265 0.590882 0.590969 0.590941

115 385 0.610457 0.610116 0.610112
146 505 0.713116 0.712898 0.712911

Table 2. H1-seminorm of the error for Example 4.1.

- .0/	1325476
4.2. Let Ω = (−1, 1)3 \ [0, 1)3, i.e., Ω is the union of seven unit cubes

(see Fig. 10) and the Fichera corner is in the origin (0,0,0). We set q = − 1
4 , and

again take u = u on ∂Ω. In this case, the solution itself has a singularity at the
origin, see (4.1).
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nodes elements 4 pts 11 pts 24 pts

26 42 0.3705270 0.3708450 0.3697510
100 371 0.0196610 0.0210155 0.0209284
137 539 0.0115099 0.0141417 0.0141224
174 707 0.0107786 0.0135825 0.0135698

Table 3. L2-norm of the error for Example 4.2.

nodes elements 4 pts 11 pts 24 pts

26 42 1.97317 2.37207 2.54099
100 371 1.43409 1.45116 1.44991
137 539 2.79540 2.80079 2.80042
174 707 6.35086 6.35945 6.35787

Table 4. H1-seminorm of the error for Example 4.2.

Figure 10. Local mesh partition of seven cubes forming a Fichera-like corner after three
refinement steps. The left figure only shows the surface lines.

Figure 11. The solution of the Poisson equation for Example 4.2. A contour fill of uh on
a three times refined mesh is shown.
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From Tables 1–4 we observe that numerical integration formulae with 11 and 24

nodes yield almost the same results which only slightly differ from those obtained
by the four node formula. We also see that a proper numerical treatment of the
essential singularity from Example 4.2 is very difficult to perform.

Acknowledgement. We would like to express our sincere gratitude to Thomas
Apel and Jan Brandts for their valuable comments on this paper.

References

[1] T. Apel: Anisotropic Finite Elements: Local Estimates and Applications. Advances in
Numer. Math. B. G. Teubner, Leipzig, 1999.

[2] T. Apel, F. Milde: Comparison of several mesh refinement strategies near edges. Com-
mun. Numer. Methods Eng. 12 (1996), 373–381.

[3] T. Apel, S. Nicaise: The finite element method with anisotropic mesh grading for elliptic
problems in domains with corners and edges. Math. Methods Appl. Sci. 21 (1998),
519–549.

[4] O. Axelsson, V.A. Barker: Finite Element Solution of Boundary Value Problems. The-
ory and Computation. Academic Press, Orlando, 1984.

[5] M. Bern, P. Chew, D. Eppstein, and J. Ruppert: Dihedral bounds for mesh genera-
tion in high dimensions. Proc. of the 6th Annual ACM-SIAM Symposium on Discrete
Algorithms (San Francisco, CA, 1995). SIAM, Philadelphia, 1995, pp. 189–196.

[6] F. Bornemann, B. Erdmann, and R. Kornhuber: Adaptive multilevel methods in three
space dimensions. Int. J. Numer. Methods Eng. 36 (1993), 3187–3203.

[7] E. Bänsch: Local mesh refinement in 2 and 3 dimensions. IMPACT Comput. Sci. Eng.
3 (1991), 181–191.

[8] L. Collatz: Numerische Behandlung von Differentialgleichungen. Springer-Verlag, Berlin-
Göttingen-Heidelberg, 1951.

[9] R. Cools: Monomial cubature rules since “Stroud”: A compilation. II. J. Comput. Appl.
Math. 112 (1999), 21–27.

[10] R. Cools, P. Rabinowitz: Monomial cubature rules since “Stroud”: A compilation.
J. Comput. Appl. Math. 48 (1993), 309–326.

[11] H.S. M. Coxeter: Trisecting an orthoscheme. Comput. Math. Appl. 17 (1989), 59–71.
[12] M. Dauge: Elliptic Boundary Value Problems on Corner Domains. Lect. Notes Math.,

Vol. 1341. Springer-Verlag, Berlin, 1988.
[13] M. Feistauer, J. Felcman, M. Rokyta, and Z. Vlášek: Finite-element solution of flow

problems with trailing conditions. J. Comput. Appl. Math. 44 (1992), 131–165.
[14] G. Fichera: Numerical and Quantitative Analysis. Surveys and Reference Works in

Mathematics, Vol. 3. Pitman (Advanced Publishing Program), London-San Francisco-
Melbourne, 1978.

[15] H. Fujii: Some remarks on finite element analysis of time-dependent field problems. The-
ory Pract. Finite Elem. Struct. Analysis. Univ. Tokyo Press, Tokyo, 1973, pp. 91–106.

[16] B.Q. Guo: The h-p version of the finite element method for solving boundary value
problems in polyhedral domains. Boundary Value Problems and Integral Equations in
Nonsmooth Domains (Luminy, 1993). Lect. Notes Pure Appl. Math., Vol. 167 (M. Costa-
bel, M. Dauge, and C. Nicaise, eds.). Marcel Dekker, New York, 1995, pp. 101–120.

[17] P. Keast: Moderate-degree tetrahedral quadrature formulas. Comput. Methods Appl.
Mech. Eng. 55 (1986), 339–348.

580



[18] S. Korotov, M. Křížek: Acute type refinements of tetrahedral partitions of polyhedral
domains. SIAM J. Numer. Anal. 39 (2001), 724–733.

[19] S. Korotov, M. Křížek: Local nonobtuse tetrahedral refinements of a cube. Appl. Math.
Lett. 16 (2003), 1101–1104.

[20] I. Kossaczký: A recursive approach to local mesh refinement in two and three dimensions.
J. Comput. Appl. Math. 55 (1994), 275–288.

[21] M. Křížek, L. Liu: On the maximum and comparison principles for a steady-state non-
linear heat conduction problem. Z. Angew. Math. Mech. 83 (2003), 559–563.

[22] M. Křížek, Qun Lin: On diagonal dominance of stiffness matrices in 3D. East-West
J. Numer. Math. 3 (1995), 59–69.

[23] M. Křížek, T. Strouboulis: How to generate local refinements of unstructured tetrahedral
meshes satisfying a regularity ball condition. Numer. Methods Partial Differ. Equations
13 (1997), 201–214.

[24] J.M. Maubach: Local bisection refinement for n-simplicial grids generated by reflection.
SIAM J. Sci. Comput. 16 (1995), 210–227.

[25] M. Picasso: Numerical study of the effectivity index for an anisotropic error indicator
based on Zienkiewicz-Zhu error estimator. Commun. Numer. Methods Eng. 19 (2003),
13–23.

[26] M. Picasso: An anisotropic error indicator based on Zienkiewicz-Zhu error estima-
tor: Application to elliptic and parabolic problems. SIAM J. Sci. Comput. 24 (2003),
1328–1355.

[27] A. Plaza, G. F. Carey: Local refinement of simplicial grids based on the skeleton. Appl.
Numer. Math. 32 (2000), 195–218.

[28] H. Schmitz, K. Volk, and W. Wendland: Three-dimensional singularities of elastic fields
near vertices. Numer. Methods Partial Differ. Equations 9 (1993), 323–337.

[29] R.S. Varga: Matrix iterative analysis. Prentice-Hall, New Jersey, 1962.

Authors’ addresses: L. Beilina, Department of Mathematics, University of Basel, Rhein-
sprung 21, CH-4051 Basel, Switzerland, e-mail: beilina@math.unibas.ch; S. Korotov,
Helsinki University of Technology, Institute of Mathematics, P.O. Box 1100, FI-02015 Es-
poo, Finland, e-mail: sergey.korotov@hut.fi; Michal Křížek, Mathematical Institute of the
Academy of Sciences of the Czech Republic, Žitná 25, CZ–115 67 Praha 1, Czech Republic,
e-mail: krizek@math.cas.cz.

581


		webmaster@dml.cz
	2020-07-02T11:29:13+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




