[1] J. Mawhin, M. Willem:
Critical Point Theory and Hamiltonian Systems. Springer-Verlag, New York-Berlin-Heidelberg-London-Paris-Tokyo, 1989.
MR 0982267
[3] M. Del Pino, R. Manasevich, and A. Murua:
Existence and multiplicity of solutions with prescribed period for a second order O.D.E. Nonlinear. Anal., Theory Methods Appl. 18 (1992), 79–92.
DOI 10.1016/0362-546X(92)90048-J |
MR 1138643
[4] C. Fabry, D. Fayyad:
Periodic solutions of second order differential equations with a $p$-Laplacian and asymmetric nonlinearities. Rend. Ist. Mat. Univ. Trieste 24 (1992), 207–227.
MR 1310080
[5] Z. Guo:
Boundary value problems of a class of quasilinear ordinary differential equations. Differ. Integral Equ. 6 (1993), 705–719.
MR 1202567 |
Zbl 0784.34018
[6] H. Dang, S. F. Oppenheimer:
Existence and uniqueness results for some nonlinear boundary value problems. J. Math. Anal. Appl. 198 (1996), 35–48.
DOI 10.1006/jmaa.1996.0066 |
MR 1373525
[7] E. Zeidler:
Nonlinear Functional Analysis and its Applications. II/B: Nonlinear Monotone Operators. Springer-Verlag, New York-Berlin-Heidelberg, 1990.
MR 1033498 |
Zbl 0684.47029
[8] P. Habets, R. Manasevich, and F. Zanolin:
A nonlinear boundary value problem with potential oscillating around the first eigenvalue. J. Differ. Equations 117 (1995), 428–445.
DOI 10.1006/jdeq.1995.1060 |
MR 1325805
[9] J. Mawhin:
Periodic solutions of systems with $p$-Laplacian-like operators. In: Nonlinear Analysis and Applications to Differential Equations. Papers from the Autumn School on Nonlinear Analysis and Differential Equations, Lisbon, September 14–October 23, 1998. Progress in Nonlinear Differential Equations and Applications, Birkhäuser-Verlag, Boston, 1998, pp. 37–63.
MR 1800613
[10] K. Deimling:
Nonlinear Functional Analysis. Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1985.
MR 0787404 |
Zbl 0559.47040