[1] J. T. Beale, T. Kato, and A. Majda:
Remarks on the breakdown of smooth solutions for the $3$-D Euler equations. Comm. Math. Phys. 94 (1984), 61–66.
DOI 10.1007/BF01212349 |
MR 0763762
[2] B. Busnello, F. Flandoli, and M. Romito:
A probabilistic representation for the vorticity of a 3D viscous fluid and for general systems of parabolic equations. Preprint,
http://arxiv.org/abs/math/0306075
[3] M. Cannone:
Wavelets, paraproducts and Navier-Stokes. Diderot Editeur, Paris, 1995. (French)
MR 1688096 |
Zbl 1049.35517
[4] A. Chorin:
Vorticity and Turbulence. Appl. Math. Sci., Vol. 103. Springer-Verlag, New York, 1994.
MR 1281384
[6] P. Constantin, C. Foiaş:
Navier-Stokes Equations. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, 1988.
MR 0972259
[7] C. R. Doering, J. D. Gibbon:
Applied Analysis of the Navier-Stokes Equations. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 1995.
MR 1325465
[9] C. Foiaş, C. Guillopé, and R. Temam:
New a priori estimates for Navier-Stokes equations in dimension $3$. Commun. Partial Differ. Equations 6 (1981), 329–359.
DOI 10.1080/03605308108820180 |
MR 0607552
[10] Z. Grujić, I. Kukavica:
Space analyticity for the Navier-Stokes and related equations with initial data in $L^p$. J. Funct. Anal. 152 (1998), 447–466.
DOI 10.1006/jfan.1997.3167 |
MR 1607936
[11] I. Karatzas, S. E. Shreve:
Brownian Motion and Stochastic Calculus, second edition. Graduate Texts in Mathematics Vol. 113. Springer-Verlag, New York, 1991.
MR 1121940
[13] M. A. Krasnosel’skiĭ, Ya. B. Rutitskiĭ:
Convex Functions and Orlicz Spaces. Translated from the first Russian edition. P. Noordhoff, Groningen, 1961.
MR 0126722
[14] P. G. Lemarié-Rieusset:
Recent Developments in the Navier-Stokes Problem. Chapman and Hall/CRC, Boca Raton, 2002.
MR 1938147 |
Zbl 1034.35093
[15] P. G. Lemarié-Rieusset:
Further remarks on the analyticity of mild solutions for the Navier-Stokes equations in $\mathbb{R}^3$. C. R. Math. Acad. Sci. Paris 338 (2004), 443–446. (French)
DOI 10.1016/j.crma.2004.01.015 |
MR 2057722
[16] S. J. Montgomery-Smith, M. Pokorný:
A counterexample to the smoothness of the solution to an equation arising in fluid mechanics. Comment. Math. Univ. Carolin. 43 (2002), 61–75.
MR 1903307
[18] V. Scheffer:
Turbulence and Hausdorff Dimension. Turbulence and Navier-Stokes Equations (Proc. Conf., Univ. Paris-Sud, Orsay, 1975). Lect. Notes Math. Vol. 565, Springer-Verlag, Berlin, 1976, pp. 174–183.
MR 0452123 |
Zbl 0394.76029
[20] H. Sohr:
Zur Regularitätstheorie der instationären Gleichungen von Navier-Stokes. Math. Z. 184 (1983), 359–375.
MR 0716283 |
Zbl 0506.35084
[21] R. Temam:
Infinite-Dimensional Dynamical Systems in Mechanics and Physics, second edition. Applied Mathematical Sciences Vol. 68. Springer-Verlag, New York, 1997.
MR 1441312