[2] H. Brezis:
Opérateurs maximaux monotones et sémi-groupes de contractions dans les espaces de Hilbert. North-Holland Math. Studies 5. North-Holland, Amsterdam, 1973.
MR 0348562
[3] M. Brokate, J. Sprekels:
Hysteresis and Phase Transitions. Appl. Math. Sci. Vol. 121. Springer-Verlag, New York, 1996.
MR 1411908
[4] G. Caginalp:
An analysis of a phase field model of a free boundary. Arch. Rational Mech. Anal. 92 (1986), 205–245.
MR 0816623 |
Zbl 0608.35080
[5] P. Colli, G. Gilardi, and M. Grasselli:
Well-posedness of the weak formulation for the phase field model with memory. Adv. Differential Equations 3 (1997), 487–508.
MR 1441853
[6] P. Colli, M. Grasselli, and A. Ito:
On a parabolic-hyperbolic Penrose-Fife phase-field system. Electron. J. Differential Equations 100 (2002), electronic.
MR 1967320
[7] P. Colli, Ph. Laurençot:
Weak solutions to the Penrose-Fife phase field model for a class of admissible heat flux laws. Phys. D 111 (1998), 311–334.
MR 1601442
[8] P. Colli, Ph. Laurençot, and J. Sprekels: Global solution to the Penrose-Fife phase field model with special heat flux law. In: Variation of Domains and Free-Boundary Problems in Solid Mechanics (Paris 1997), P. Argoul, M. Frémond, Q. S. Nguyen (eds.), Kluwer, Dordrecht, 1997.
[9] P. C. Fife, O. Penrose:
Interfacial dynamics for thermodynamically consistent phase field models with nonconserved order parameter. Electron. J. Differential Equations 16 (1995), electronic.
MR 1361512
[11] P. Galenko:
Phase field model with relaxation of the diffusion flux in nonequilibrium solidification of a binary system. Phys. Lett. A 287 (2001), 190–197.
DOI 10.1016/S0375-9601(01)00489-3
[12] G. Gilardi:
Teoremi di regolarità per la soluzione di un’equazione differenziale astratta lineare del secondo ordine. Ist. Lombardo Accad. Sci. Lett. Rend. A 106 (1972), 641–675.
MR 0333386 |
Zbl 0298.34057
[13] C. Giorgi, M. Grasselli, and V. Pata:
Uniform attractors for a phase field model with memory and quadratic nonlinearity. Indiana Univ. Math. J. 48 (1999), 1395–1445.
MR 1757078
[14] M. Grasselli, V. Pata:
Existence of a universal attractor for a parabolic-hyperbolic phase field system. Adv. Math. Sci. Appl. 13 (2003), 443–459.
MR 2029927
[18] N. Kenmochi, M. Kubo:
Weak solutions of nonlinear systems for non-isothermal phase transitions. Adv. Math. Sci. Appl. 9 (1999), 499–521.
MR 1690439
[20] J. L. Lions:
Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Gauthier-Villars, Paris, 1969.
MR 0259693 |
Zbl 0189.40603
[21] O. Penrose, P. C. Fife:
Thermodynamically consistent models of phase field type for the kinetics of phase transitions. Phys. D 43 (1990), 44–62.
MR 1060043
[22] O. Penrose, P. C. Fife:
On the relation between the standard phase field model and a “thermodynamically consistent” phase field model. Phys. D 69 (1993), 107–113.
MR 1245658
[24] E. Rocca, G. Schimperna:
Global attractor for a parabolic-hyperbolic Penrose-Fife phase field system. Discrete Contin. Dyn. Syst. (Special Volume) (to appear).
MR 2224504
[25] H. G. Rotstein, S. Brandon, A. Novick-Cohen, and A. A. Nepomnyashchy:
Phase field equations with memory: the hyperbolic case. SIAM J. Appl. Math. 62 (2001), 264–282.
MR 1857545
[26] J. Simon:
Compact sets in the space $L^p(0,T;B)$. Ann. Mat. Pura Appl. 146 (1987), 65–96.
MR 0916688
[27] R. Temam:
Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag, New York, 1997.
MR 1441312 |
Zbl 0871.35001