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Abstract. We obtain logarithmic improvements for conditions for regularity of the Navier-
Stokes equation, similar to those of Prodi-Serrin or Beale-Kato-Majda. Some of the proofs
make use of a stochastic approach involving Feynman-Kac-like inequalities. As part of our
methods, we give a different approach to a priori estimates of Foiaş, Guillopé and Temam.
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1. Introduction

The version of the three dimensional Navier-Stokes equation we study is the dif-
ferential equation in u = u(t) = u(x, t), where t > 0 and x ∈ � 3 :

∂u

∂t
= ∆u− L div(u⊗ u), u(0) = u0.

Here L denotes the Leray projection. We will not usually be working with classical
solutions. We define u(t), 0 6 t 6 T , to be a solution of the Navier-Stokes equation
if, whenever u(t0) is sufficiently regular for a mild solution

u(t) = e(t−t0)∆u(t0)−
∫ t

t0

e(t−s)∆L div(u(s)⊗ u(s)) ds

to exist for t ∈ [t0, t0 + τ) for some τ > 0, then u(t) is equal to that mild solution in
[t0, t0 + τ).

*The author was partially supported by an NSF grant.
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We also use other ways to describe the three dimensional Navier-Stokes equation.
First, let us denote the vorticity by w = w(t) = w(x, t) = curlu. If w is sufficiently
smooth then

∂w

∂t
= ∆w − u · ∇w + w · ∇u, w(0) = curlu0.

Another description is given by the so called magnetization variable [4], [16]. Let
m = m(t) = m(x, t) be a vector field satisfying an equation

∂m

∂t
= ∆m− u · ∇m−m · (∇u)T , m(0) = u0 +∇q0

for some scalar field q0 = q0(x). (Here the superscript T denotes the transpose.)
Then under sufficient smoothness assumptions we have that u is the Leray projection
of m.
A famous open problem is to prove regularity of the Navier-Stokes equation, that

is, if the initial data u0 is in L2 and is regular (which in this paper we define to
mean that it is in the Sobolev spaces W n,q for some 2 6 q < ∞ and all positive
integers n), then the solution u(t) is regular for all t > 0. Such regularity would also
imply uniqueness of the solution u(t). Currently only the existence of weak solutions
is known. Also, it is known that for each regular u0 there exists t0 > 0 such that
u(t) is regular for 0 6 t 6 t0. We refer the reader to [3], [6], [7], [14], [21].
In studying this problem, various conditions that imply regularity have been ob-

tained. For example, the Prodi-Serrin conditions ([17], [19]) state that for some
2 6 p < ∞, 3 < q 6 ∞ with 2/p + 3/q 6 1,

∫ T

0

‖u(t)‖p
q dt < ∞

for all T > 0. If u is a weak solution to the Navier-Stokes equation satisfying a Prodi-
Serrin condition with regular initial data u0, then u is regular (see [20]). (Recently
Escauriaza, Seregin and Šverák [8] showed that the condition when q = 3 and p = ∞
is also sufficient.) This is a long way from what is currently known for the so called
Leray-Hopf weak solutions: ∫ T

0

‖u(t)‖p
q dt < ∞

for 2/p + 3/q > 3/2, 2 6 q 6 6.
Another condition is that of Beale, Kato and Majda [1]. They show that regularity

follows from the condition ∫ T

0

‖w(t)‖∞ dt < ∞

for all T > 0. (In fact they proved this for the Euler equation, but the proof
works also for the Navier-Stokes equation with only small modifications.) This was
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strengthened by Kozono and Taniuchi [12] to show that regularity follows from the
condition ∫ T

0

‖∇u(t)‖BMO dt ≈
∫ T

0

‖w(t)‖BMO dt < ∞

for all T > 0, where BMO denotes here the space of functions with bounded mean
oscillation.
The purpose of this paper is threefold. First, we would like to provide some

logarithmic improvements to these conditions. Secondly, we would like to present a
stochastic approach to the Navier-Stokes equation, obtaining our conditions using
Feynman-Kac-like inequalities. Thirdly, we would like to present a different process
for creating estimates of Foiaş, Guillopé and Temam.
To this end, the first result of this paper is the logarithmic improvement to the

Prodi-Serrin conditions.

Theorem 1.1. Let 2 < p < ∞, 3 < q < ∞ with 2/p + 3/q = 1. If u is a solution
to the Navier-Stokes equation satisfying

∫ T

0

‖u(t)‖p
q

1 + log+ ‖u(t)‖q

dt < ∞

for some T > 0, then u(t) is regular for 0 < t 6 T .

We first present a proof of this result (and indeed of a slightly stronger result) that
uses a standard approach. Then we present a stochastic approach to the Navier-
Stokes equation. This is a kind of Lagrangian coordinates approach to the Navier-
Stokes equation, but with a probabilistic twist in that we follow the path of each
particle with a stochastic perturbation. A similar approach was adopted by Busnello,
Flandoli and Romito [2].
From this we obtain the following Beale-Kato-Majda type condition. For 1 6 q <

∞, define the function on [0,∞)

Φq(λ) =
(eλ − 1

e− 1

)q

.

Define the Φq-Orlicz norm on any space of measurable functions by the formula

‖f‖Φq = inf
{

λ > 0:
∫

Φq(|f(x)|/λ) dx 6 1
}

.

(Thus the triangle inequality is a consequence of the fact that Φq is convex, see [13].)
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Theorem 1.2. Let 1 < q < ∞, 3 < r < ∞, and T > 0. Suppose that u is a
solution to the Navier-Stokes equation satisfying
(1) for all T0 ∈ (0, T ), ∫ T

T0

‖∇u(t)‖Φq dt < ∞,

and
(2) either q < 3, or ‖u(t)‖r < ∞ for almost every t ∈ [0, T ].
Then u(t) is regular for 0 < t 6 T .

Note that since ‖ · ‖Φq1
6 c‖ · ‖Φq2

for q1 > q2, we may assume without loss of
generality that q > 3/2. Next, if 3/2 < q < 3, since ‖ · ‖q 6 (e − 1)‖ · ‖Φq , by
the Sobolev inequality we see that the second hypothesis is automatically satisfied
with r = 3q/(3 − q). Also, this hypothesis is always satisfied for Leray-Hopf weak
solutions with r = 6.
Next we demonstrate how to obtain Theorem 1.1 from Theorem 1.2 using the

following result. If u is a solution to the Navier-Stokes equation, we define sets

An,q
T0,T1

(λ) = {t ∈ [T0, T1] : ‖∇nu(t)‖q > λ}.

Theorem 1.3. Given 3 < q1 6 q2 6 ∞ and a non-negative integer n, there exists
constants c1, c2, c3 > 0 such that if u(t), 0 6 t 6 T2, is a solution to the Navier-Stokes
equation and if 0 6 T1 6 T2, then for all r ∈ (0,

√
T2 − T1) we have

|An,q2
T1+r2,T2

(c1r
3/q2−n−1)| 6 c2|A0,q1

T1,T2
(c3r

3/q1−1)|.

A similar result that one can obtain (but we do not prove here) is that for positive
integers n we have |An,2

T1+r2,T2
(c1r

1/2−n)| 6 c2|A1,2
T1,T2

(c3r
−1/2)|.

Corollary 1.4. Under the hypotheses of Theorem 1.3, there exists a constant
c > 0 with the following properties. If Θ(λ) is a positive increasing function of
λ > 0, define

κ =
∫ ∞

0

min{(cλ−2 − T0)+, T1} dΘ(λ).

Then

∫ T1

T0

Θ(‖∇nu(s)‖1/(1+n−3/q2)
q2

) ds 6 cκ + c

∫ T1

0

Θ(c‖u(s)‖1/(1−3/q1)
q1

) ds.

Similarly,

∫ T1

T0

Θ(‖∇nu(s)‖1/(n−1/2)
2 ) ds 6 cκ + c

∫ T1

0

Θ(c‖∇u(s)‖2
2) ds.
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Since the Leray-Hopf weak solution to the Navier-Stokes equation satisfies∫ T

0
‖∇u(t)‖2

2 dt < ∞, one can quickly recover the results of Foiaş, Guillopé and
Temam [9] that say that

∫ T

0 ‖∇nu(t)‖1/(n−1/2)
2 dt < ∞.

2. Theorem 1.1

The hypothesis of Theorem 1.1 implies that, given ε ∈ (0, T ), there exists T0 ∈
(0, ε) with u(T0) ∈ Lq. Let T ∗ > T0 be the first point of non-regularity for u(t).
It is well known that in order to show that T ∗ > T , it is sufficient to show an a
priori estimate, that is supT06t<min{T∗,T} ‖u(t)‖q < ∞. This is because it is then
possible to extend the regularity beyond T ∗ if T ∗ 6 T . Without loss of generality, it
is sufficient to consider the case T = T ∗ (so as to obtain a contradiction).���������

of Theorem 1.1. We allow all constants to implicitly depend upon p and
q. Let us define quantities

v = u|u|q/2−1,

A =
3∑

i,j=1

(
|u|q/2−1 ∂ui

∂xj

)2

,

B =
3∑

i,j=1

(
|u|q/2−3ui

3∑

k=1

uk
∂uk

∂xj

)2

.

Note that

|∇v|2 :=
3∑

i,j=1

( ∂vi

∂xj

)2

≈ A + B,

3∑

i,j=1

∂

∂xj
(|u|q−2ui)

∂ui

∂xj
≈ A + B,

3∑

i,j=1

( ∂

∂xj
(|u|q−2ui)

)2

6 c|u|q−2|∇v|2.

We start with the Navier-Stokes equation, take the inner product with u|u|q−2, and
integrate over � 3 to obtain

|u|q−1
q

∂

∂t
‖u‖q =

∫
|u|q−2u ·∆u dx−

∫
|u|q−2u · L div(u⊗ u) dx.

Integrating by parts, we see that

∫
|u|q−2u ·∆u dx = −

∫ 3∑

i,j=1

∂

∂xj
(|u|q−2ui)

∂ui

∂xj
dx ≈ −‖∇v‖2

2
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and

∫
|u|q−2u · L div(u⊗ u) dx =

∫ 3∑

i,j=1

∂

∂xj
(|u|q−2ui)[L(uju)]i dx

6 c‖ |u|q/2−1‖s ‖∇v‖2 ‖L(u⊗ u)‖r

where r = 1 + q/2 and s = (2q + 4)/(q − 2). Now the Leray projection is a bounded
operator on Lr, and hence ‖L(u ⊗ u)‖r ≈ ‖u‖2

2+q. Also ‖ |u|q/2−1‖s ≈ ‖u‖q/2−1
2+q .

Hence
∫
|u|q−2u · L div(u⊗ u) dx 6 c‖u‖1+q/2

2+q ‖∇v‖2 = c‖v‖1+2/q
2+4/q‖∇v‖2.

From the Sobolev and interpolation inequalities we obtain

‖v‖2+4/q 6 c‖ |∇|3/(q+2)v‖2 6 c‖v‖(q−1)/(q+2)
2 ‖∇v‖3/(q+2)

2 ,

and hence ∫
|u|q−2u · L div(u⊗ u) dx 6 c‖v‖1−1/q

2 ‖∇v‖1+3/q
2 .

Now apply Young’s inequality ab 6 ((q−3)a2q/(q−3) +(q+3)b2q/(q+3))/2q for a, b > 0
to obtain

∫
|u|q−2u · L div(u⊗ u) dx 6 c1‖∇v‖2

2 + c2‖v‖2(q−1)/(q−3)
2 ,

where c1 may be made as small as required by making c2 larger. Hence

‖u‖q−1
q

∂

∂t
‖u‖q 6 c‖v‖2(q−1)/(q−3)

2 ,

that is,
∂

∂t
‖u‖q 6 c‖u‖p+1

q ,

and so
∂

∂t
log(1 + log+ ‖u‖q) 6

c‖u‖p
q

1 + log+ ‖u‖q

.

Integrating, we see that for T0 6 t < T

log(1 + log+ ‖u(t)‖q) 6 log(1 + log+ ‖u(T0)‖q)

+ c

∫ T

T0

‖u(s)‖p
q

1 + log+ ‖u(s)‖q

ds,

which provides a uniform bound for ‖u(t)‖q. �

456



��� �"!
��#
2.1. Note that this proof can easily be adapted to show that a sufficient

condition for regularity is that
∫ T

0

‖u(s)‖p
q

Θ(‖u(s)‖q)
ds < ∞,

where Θ is any increasing function for which
∫ ∞

1

1
xΘ(x)

dx = ∞.

3. A priori estimates

This section is devoted to the proof of Theorem 1.3 and Corollary 1.4. The proof
is very similar to the proof of Scheffer’s Theorem [18] that states that the Hausdorff
dimension of the set of t for which the solution u(t) is not regular is 1/2. The main
tool is the following result due to Grujić and Kukavica [10] (see also [15]).

Theorem 3.1. There exist constants a, c > 0 and a function T : (0,∞) → (0,∞)
with T (λ) →∞ as λ → 0, with the following properties. If u0 ∈ Lq( � 3 ), then there
is a solution u(t) (0 6 t 6 T (‖u0‖q)) to the Navier-Stokes equation with u(0) = u0,
and u(x, t) is the restriction of an analytic function u(x + iy, t) + iv(x + iy, t) in
the region {x + iy ∈ $ 3 : |y| 6 a

√
t}, and ‖u(· + iy, t) + iv(· + iy, t)‖q 6 c‖u0‖q for

|y| 6 a
√

t.
���������

of Theorem 1.3. First let us show that there exist constants c1, c3, c4 > 0
such that if u(t), t0 − r2 6 t 6 t0, is a solution to the Navier-Stokes equation and
|A0,q1

t0−r2,t0
(c3r

3/q1−1)| < c4r
2, then ‖∇nu(t0)‖q2 < c1r

3/q2−n−1.
To see this, let us first consider the case when t0 = 0 and r = 1. By hypothesis,

we see that there exists t ∈ [−1,−1 + c4] with ‖u(t)‖q1 < c3. By Theorem 3.1 and
the appropriate Cauchy integrals, if c4 is small enough, then there exists a constant
c1 > 0 such that ‖∇nu(0)‖q2 < c1.
Now, by replacing u(x, t) by r−1u(r−1x, r−2(t− t0)), we can relax the restriction

r = 1 and t0 = 0, and we obtain the statement we asserted.
Next, given ε > 0, it is trivial to find a finite collection t1, . . . , tN in A =

An,q2
T1+r2,T2

(c1r
3/q2−n−1) such that the sets [tn − r2, tn] are disjoint, but the sets

[tn− r2− ε, tn + ε] cover A. By the above observation, |A0,q1
t0−r2,t0

(c3r
3/q1−1)| > c4r

2.
Hence

r2

r2 + 2ε
|A| 6 Nr2 < c−1

4

N∑

n=1

|A0,q1
tn−r2,tn

(c3r
3/q1−1)|

6 c−1
4 |A0,q1

T1,T2
(c3r

3/q1−1)|.
Since ε is arbitrary, the result follows. �
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���������
of Corollary 1.4. We only prove the first inequality. By Theorem 1.3,

there exist constants c1, c2, c3 > 0 such that

∫ T1

T0

Θ(‖∇nu(s)‖1/(1+n−3/q2)
q2

) ds

=
∫ ∞

0

|{s ∈ [T0, T1] : ‖∇nu(s)‖1/(1+n−3/q2)
q2

> λ}| dΘ(λ)

6 c1κ +
∫ ∞

0

|{s ∈ [c2λ
−2, T1] : ‖∇nu(s)‖1/(1+n−3/q2)

q2
> λ}| dΘ(λ)

6 c1κ + c1

∫ ∞

0

|{s ∈ [0, T1] : ‖u(s)‖1/(1−3/q1)
q1

> c3λ}| dΘ(λ)

= c1κ + c1

∫ T1

0

Θ(c−1
3 ‖u(s)‖1/(1−3/q1)

q1
) ds.

�

4. A stochastic description

Let us give a little motivation. Suppose that we defined ϕt0,t1(x) to be X(t0),
where X satisfies the equation

dX(t) = u(X(t), t) dt, X(t1) = x,

then ϕt0,t1 would be the “back to coordinates map” that takes a point at t = t1
to where it was carried from by the flow of the fluid at time t = t0. For the Euler
equation, this provides a very effective way to describe the solution, for example, the
equation for vorticity can be rewritten in a Lagrangian form:

w(x, t) = w(ϕ0,t(x), 0) +
∫ t

0

w(ϕs,t(x), s) · ∇u(ϕs,t(x), s) ds.

Similarly, for the magnetization variable we have

m(x, t) = m(ϕ0,t(x), 0)−
∫ t

0

m(ϕs,t(x), s) · (∇u(ϕs,t(x), s))T ds.

For the Navier-Stokes equation this formula is not true, and the Laplacian term can
make things complicated. One approach to dealing with this is described in the paper
by Constantin [5]. However, we take a different approach using Brownian motion,
using a kind of “randomly perturbed back to coordinates map.” Such a method was
already discussed in the paper [16], here we make the discussion more rigorous. The
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author recently found out that a similar approach was followed by Busnello, Flandoli
and Romito in [2].
The hypotheses of Theorem 1.2 imply that, given ε ∈ (0, T ), there exists t′ ∈ (0, ε)

with u(t′) ∈ Lr. Then by known results (for example Theorem 3.1), it follows
that there exists 0 < T0 < ε such that u(T0) ∈ W n,r′ for all r′ ∈ [r,∞] and all
positive integers n. Furthermore, arguing as in Section 2, we only need to prove
supT06t<min{T∗,T} ‖u(t)‖r < ∞ under the a priori assumption that the solution is
regular for t ∈ [T0, T ].
If f : � 3 → � is regular and T0 6 t0 6 t1 < T , define At0,t1f(x) = α(x, t1), where

α satisfies the transport equation

∂α

∂t
= ∆α− u · ∇α, α(x, t0) = f(x).

Since div(u) = 0, an easy integration by parts argument shows that

∂

∂t

∫
α(x, t) dx = 0,

and hence if f is also in L1, then

∫
At0,t1f(x) dx =

∫
f(x) dx.

Since stochastic differential equations traditionally move forwards in time, it will be
convenient to consider a time reversed equation. Let b(t) be a three dimensional
Brownian motion. For T0 6 t0 6 t1 < T1, define the random function ϕt0,t1 : � 3 →
� 3 by ϕt0,t1(x) = X(−t0), where X satisfies the stochastic differential equation

dX(t) = −u(X(t), t) dt +
√

2 db(t), X(−t1) = x.

It follows by the Itô Calculus [11] that if T0 6 t0 6 t1 < T , then

At0,t1f(x) = % f(ϕt0 ,t1(x)).

(Here as in the rest of the paper, % denotes the expected value.) Note that if f is
also in L1, then ∫

% f(ϕt0 ,t1(x)) dx =
∫

f(x) dx.

Applying the usual dominated and monotone convergence theorems, it quickly follows
that the last equality is also true if f is any function in L1, or if f is any positive
function.
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Now let us develop the equations for the magnetization variable. (The same
approach will also work for the vorticity.) If we set m(T0) = u(T0), then we note
that m is the unique solution to the integral equation

m(t) = AT0,tu(T0)−
∫ t

T0

As,t(m(s) · (∇u(s))T ) ds (T0 6 t < T ).

Uniqueness follows quickly by the usual fixed point argument over short intervals,
remembering that u(t) is regular for T0 6 t < T .
Consider also the random quantity m̃ = m̃(x, t) as the solution to the integral

equation for T0 6 t < T

m̃(x, t) = u(ϕT0,t(x), T0)−
∫ t

T0

m̃(ϕs,t(x), s) · (∇u(ϕs,t(x), s))T ds.

Again, it is very easy to show that a solution exists by using a fixed point argument
over short time intervals. It is seen that % m̃ satisfies the same equation as m, and
hence % m̃ = m.
Next, ϕt0,t1(ϕt1,t2(x)) = ϕt0,t2(x), since both are Y (t0) where Y (t) is the solution

to the integral equation

Y (t) = ϕt1,t2(x) +
∫ t

t1

u(Y (s), s) ds +
√

2(b−t − b−t1).

Hence

m̃(ϕs1,t(x), s1)− m̃(ϕs2,t(x), s2) =
∫ s2

s1

m̃(ϕs,t(x), s) · (∇u(ϕs,t(x), s))T ds.

Thus, by Gronwall’s inequality, if T0 6 t < T then

|m̃(x, t)| 6 exp
(∫ t

T0

|∇u(ϕs,t(x), s)| ds

)
|u(ϕT0,t(x), T0)|.

(This is essentially the Feynman-Kac formula.) The goal, then, is to find uniform
estimates on the quantity

exp
(∫ t

T0

|∇u(ϕs,t(x), s)| ds

)
.

This we proceed to do in the next section.
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5. Theorem 1.2

Let us fix q and r satisfying the hypotheses of Theorem 1.2, and allow all constants
to implicitly depend upon q and r. We retain the notation from the previous section,
in particular the definitions of T0, T ∗ and T .
���������

of Theorem 1.2. Since ‖u(t)‖r < ∞ for almost every t ∈ [0, T ], by
Theorem 1.3, we see that ‖∇u(t)‖∞ < ∞ for almost every t ∈ [0, T ]. Hence, there
exists λ > T−1

0 such that ∫

B

‖∇u(t)‖Φq dt 6 1
q
,

where B = {t ∈ [T0, T ] : ‖∇u(t)‖∞ > c2λ}. Thus for T0 6 t < T , we have that
|m̃(x, t)| is bounded by

ec2λ(t−T0) exp
(∫

B∩[T0,t]

|∇u(ϕs,t(x), s)| ds

)
|u(ϕT0,t(x), T0)|.

Hence by Jensen’s and Hölder’s inequalities,

‖m(t)‖r
r 6

∫
% |m̃(t)|r dx 6 ec2qλ(t−T0)(Nr

r + Nr
rq′Ñ

r),

where q′ = q/(q − 1),

Ns =
(∫

% |u(ϕT0 ,t(x), T0)|s dx

)1/s

= ‖u(T0)‖s,

and

Ñ q =
∫
%
(

exp
(

q

∫

B∩[T0,t]

‖∇u(ϕs,t(x), s)| ds

)
− 1

)q

dx.

Since the Orlicz norm satisfies the triangle inequality, we have
∥∥∥∥
∫

B∩[T0,t]

|∇u(ϕs,t(·), s)| ds

∥∥∥∥
Φq

6 1
q
,

that is, Ñ 6 e− 1. Since ar + br 6 (a + b)r for a, b > 0, we conclude that

‖m(t)‖r 6 ‖u(T0)‖r + (e− 1)ec2λ(t−T0)‖u(T0)‖rq′ .

As the Leray projection is a bounded operator on Lr for 1 < r < ∞, it follows that
‖u(t)‖r is also uniformly bounded, and the result follows. �

A second proof of Theorem 1.1 now follows from the next result.
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Lemma 5.1. There is a constant c > 0 such that if f is a measurable function,
then

‖f‖Φq 6 c

(
‖f‖q +

‖f‖∞
1 + Φ−1

q ((‖f‖∞/‖f‖q)q)

)
.

���������
. Let us assume that ‖f‖∞ = 1, and set a = ‖f‖q, b = Φ−1

q (a−q) and
n = a + 1/(1 + b). Let f∗ : [0,∞] → [0,∞] be the non-increasing rearrangement
of |f |, that is,

f∗(t) = sup{λ > 0: |{x : |f(x)| > λ}| > t},
so

∫
F (|f(x)|) dx =

∫∞
0

F (f∗(t)) dt for any Borel measurable function F . Notice
that f∗(t) 6 min{1, at−1/q}.
Let us first consider the case a 6 1, so that b > 1, 2n > 1/b and n > a. Then

∫
Φq(|f(x)|/2n) dx 6

∫ ∞

0

Φq(f∗(t)/2n) dt.

We split this integral up into three pieces. First,

∫ aq

0

Φq(f∗(t)/2n) dt 6
∫ aq

0

Φq(b) dt = 1.

Next, since (Φq(λ))1/2q is convex for λ > 1,

∫ aqbq

aq

Φq(f∗(t)/2n) dt 6
∫ aqbq

aq

Φq(abt−1/q) dt

6
∫ aqbq

aq

a2qΦq(b)
t2

dt 6 1.

Next, for t > aqbq , f∗(t) 6 1/b 6 2n, and Φq(λ) 6 λq for 0 6 λ 6 1, we have
∫ ∞

aqbq

Φq(f∗(t)/2n) dt 6
∫ ∞

aqbq

(f∗(t)/2n)q dt 6 1.

Since Φq(λ/3) 6 Φq(λ)/3 for λ > 0, we arrive at
∫

Φq(|f(x)|/6n) dx 6 1,

that is, ‖f‖Φq 6 6n.
The case a > 1 (so b 6 1 and 2n > 1 + 2a) is simpler, as it is easy to estimate

∫ ∞

0

Φq(f∗(t)/2n) dt 6
∫ 1

0

Φq(1) dt +
∫ ∞

1

(f∗(t)/2n)q dt 6 2.

�
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of Theorem 1.1. Applying Corollary 1.4 using the function

Θ(λ) =
λ2

1 + log+ λ
,

we obtain for all T0 ∈ (0, T )

∫ T

T0

‖∇u(s)‖∞
1 + log+ ‖∇u(s)‖∞

ds < ∞

and

∫ T

T0

‖∇u(s)‖2q/(2q−3)
q

1 + log+ ‖∇u(s)‖q

ds < ∞.

Hence if 1 < α < 2q/(2q − 3) we have that

∫ T

T0

‖∇u(s)‖α
q ds < ∞.

Next, considering the cases ‖f‖∞ > ‖f‖α
q and ‖f‖∞ 6 ‖f‖α

q , we see that

‖f‖∞
1 + Φ−1

q ((‖f‖∞/‖fq‖)q)
6 c

(
‖f‖α

q +
‖f‖∞

1 + log+ ‖f‖∞

)
.

Applying Lemma 5.1, we see that the hypothesis of Theorem 1.1 implies the hy-
potheses of Theorem 1.2 with q = r. �
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