Article
Keywords:
reiterated homogenization; multiscale convergence; parabolic equation
Summary:
Reiterated homogenization is studied for divergence structure parabolic problems of the form $\partial u_{\varepsilon }/\partial t - \div \bigl (a\bigl (x,x/\varepsilon ,x/\varepsilon ^2, t,t/\varepsilon ^{k}\bigr )\nabla u_{\varepsilon }\bigr )=f$. It is shown that under standard assumptions on the function $a(x,y_1,y_2,t,\tau )$ the sequence $\lbrace u_\epsilon \rbrace $ of solutions converges weakly in $L^2(0,T;H^1_0(\Omega ))$ to the solution $u$ of the homogenized problem $\partial u/\partial t -\div (b(x,t)\nabla u)=f$.
References:
[3] A. Bensoussan, J.-L. Lions, and G. Papanicolaou:
Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam-New York-Oxford, 1978.
MR 0503330
[4] D Cioranescu, P. Donato:
An Introduction to Homogenization. Oxford Lecture Series in Mathematics and its Applications. Oxford Univ. Press, New York, 1999.
MR 1765047
[5] A. Dall’Aglio, F. Murat:
A corrector result for $H$-converging parabolic problems with time-dependent coefficients. Dedicated to Ennio De Giorgi. Ann. Sc. Norm. Super. Pisa Cl. Sci. IV 25 (1997), 329–373.
MR 1655521
[7] J.-L. Lions, D. Lukkassen, L. E. Persson, and P. Wall:
Reiterated homogenization of nonlinear monotone operators. Chin. Ann. Math. Ser. B 22 (2001), 1–12.
DOI 10.1142/S0252959901000024 |
MR 1823125
[8] N. Svanstedt, N. Wellander: A note on two-scale convergence of differential operators. Submitted.
[9] R. Temam:
Navier-Stokes equations. Theory and Numerical Analysis. North-Holland, Amsterdam-New York-Oxford, 1977.
MR 0609732 |
Zbl 0383.35057