[1] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski:
Nonsmooth Analysis and Control Theory. Springer-Verlag, New York, 1998.
MR 1488695
[2] V. F. Demyanov:
On a relation between the Clarke subdifferential and the quasi-differential. Vestn. Leningr. Univ., Math. 13 (1981), 183–189.
Zbl 0473.49008
[3] V. F. Demyanov, A. M. Rubinov:
Constructive Nonsmooth Analysis. Peter Lang, Frankfurt am Main, 1995.
MR 1325923
[4] F. Facchinei, A. Fischer, C. Kanzow, and J. Peng:
A simple constrained optimization reformulation of KKT systems arising from variational inequalities. Appl. Math. Optimization 40 (1999), 19–37.
DOI 10.1007/s002459900114 |
MR 1685651
[5] Y. Gao:
Demyanov difference of two sets and optimality conditions of Lagrange multipliers type for constrained the quasidifferential optimization. J. Optimization Theory Appl. 104 (2000), 377–394.
DOI 10.1023/A:1004613814084 |
MR 1752323
[7] J. B. Hiriart-Urruty, C. Lemaréchal: Convex Analysis and Minimization. Springer-Verlag, Berlin, 1993.
[8] D. Li, N. Yamashita, and M. Fukushima:
Nonsmooth equations based BFGS method for solving KKT system in mathematical programming. J. Optimization Theory Appl. 109 (2001), 123–167.
DOI 10.1023/A:1017565922109 |
MR 1833427
[9] J. V. Outrata:
Minimization of nonsmooth nonregular functions: Applications to discrete-time optimal control problems. Probl. Control Inf. Theory 13 (1984), 413–424.
MR 0782437
[10] J. S. Pang, D. Ralph:
Piecewise smoothness, local invertibility, and parametric analysis of normal maps. Math. Oper. Res. 21 (1996), 401–426.
DOI 10.1287/moor.21.2.401 |
MR 1397221
[13] L. Qi, H. Jiang:
Semismooth Karush-Kuhn-Tucker equations and convergence analysis of Newton and quasi-Newton methods for solving these equations. Math. Oper. Res. 22 (1997), 301–325.
DOI 10.1287/moor.22.2.301 |
MR 1450794