[1] B. Abu-Jdayil, P. O. Brunn: Effects of nonuniform electric field on slit flow of an electrorheological fluid. J. Rheol. 39 (1995), 1327–1341.
[2] B. Abu-Jdayil, P. O. Brunn: Effects of electrode morphology on the slit flow of an electrorheological fluid. J. Non-Newtonian Fluid Mech. 63 (1966), 45–61.
[3] B. Abu-Jdayil, P. O. Brunn:
Study of the flow behaviour of electrorheological fluids at shear- and flow- mode. Chem. Eng. and Proc. 36 (1997), 281–289.
DOI 10.1016/S0255-2701(97)00002-0
[4] W. Bao, J. W. Barrett:
A priori and a posteriori error bounds for a nonconforming linear finite element approximation of a non-Newtonian flow. RAIRO Modél. Math. Anal. Numér. 32 (1998), 843–858.
DOI 10.1051/m2an/1998320708431 |
MR 1654432
[5] J. Baranger, K. Najib, and D. Sandri:
Numerical analysis of a three-fields model for a quasi-Newtonian flow. Comput. Methods Appl. Mech. Engrg. 109 (1993), 281–292.
DOI 10.1016/0045-7825(93)90082-9 |
MR 1245979
[6] H. Bellout, F. Bloom, and J. Nečas:
Young measure-valued solutions for non-Newtonian incompressible fluids. Comm. Partial Differential Equations 19 (1994), 1763–1803.
DOI 10.1080/03605309408821073 |
MR 1301173
[7] R. Bloodworth: Electrorgeological fluids based on polyurethane dispersions. In: Electrorheological Fluids, R. Tao, G. D. Roy (eds.), World Scientific, 1994, pp. 67–83.
[8] R. Bloodworth, E. Wendt: Materials for ER-fluids. Int. J. Mod. Phys. B 23/24 (1996), 2951–2964.
[9] B. D. Coleman, W. Noll:
The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational Mech. Anal. 13 (1963), 167–178.
DOI 10.1007/BF01262690 |
MR 0153153
[10] L. Diening:
Maximal function on generalized Lebesgue spaces $L^{p(\cdot )}$. Math. Inequ. Appl. 7 (2004), 245–253, Preprint 2002-02, University Freiburg.
MR 2057643 |
Zbl 1071.42014
[12] L. Diening:
Theoretical and numerical results for electrorheological fluids. PhD. thesis, University Freiburg, 2002.
Zbl 1022.76001
[13] L. Diening, A. Prohl, and M. Růžička:
On time discretizations for generalized Newtonian fluids. In: Nonlinear Problems in Mathematical Physics and Related Topics II. In honour of Professor O. A. Ladyzhenskaya, M. Sh. Birman, S. Hildebrandt, V. Solonnikov, and N. N. Uraltseva (eds.), Kluwer/Plenum, New York, 2002, pp. 89–118.
MR 1971992
[14] L. Diening, M. Růžička:
Strong solutions for generalized Newtonian fluids. J. Math. Fluid. Mech, Accepted. Preprint 2003-8, University Freiburg.
MR 2166983
[15] L. Diening, M. Růžička:
Calderón-Zygmund operators on generalized Lebesgue spaces $L^{p(\cdot )}$ and problems related to fluid dynamics. J. Reine Angew. Math. 563 (2003), 197–220.
MR 2009242
[16] L. Diening, M. Růžička:
Integral operators on the halfspace in generalized Lebesgue spaces $L^{p(\cdot )}$, Part I. J. Math. Anal. Appl. (2004), 559–571.
MR 2086975
[17] L. Diening, M. Růžička:
Integral operators on the halfspace in generalized Lebesgue spaces $L^{p(\cdot )}$, Part II. J. Math. Anal. Appl. (2004), 572–588.
MR 2086976
[18] W. Eckart:
Theoretische Untersuchungen von elektrorheologischen Flüssigkeiten bei homogenen und inhomogenen elektrischen Feldern. Shaker Verlag, Aachen, 2000.
Zbl 0958.76003
[19] W. Eckart, M. Růžička: Modeling micropolar electrorheological fluids. Accepted. Preprint 2003-11, University Freiburg.
[20] A. C. Eringen, G. Maugin: Electrodynamics of Continua, Vol. I and II. Springer-Verlag, New York, 1989.
[21] J. Frehse, J. Málek:
Problems due to the no-slip boundary in incompressible fluid dynamics. In: Geometric Analysis and Nonlinear Partial Differential Equations, Springer-Verlag, Berlin, 2003, pp. 559–571.
MR 2008356
[22] J. Frehse, J. Málek, and M. Steinhauer:
An existence result for fluids with shear dependent viscosity—steady flows. Nonlinear Anal. 30 (1997), 3041–3049.
MR 1602949
[23] M. Giaquinta, G. Modica, and J. Souček:
Cartesian currents in the calculus of variations. II. Variational integrals. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, Vol. 38, Springer-Verlag, Berlin, 1998.
MR 1645082
[24] E. Giusti:
Direct Methods in the Calculus of Variations. Unione Matematica Italiana, Bologna, 1994. (Italian)
MR 1707291 |
Zbl 0942.49002
[25] R. A. Grot: Relativistic continuum physics: Electromagnetic interactions. In: Continuum Physics, A. C. Eringen (ed.), Academic Press, , 1976, pp. 130–221.
[26] T. C. Halsey, J. E. Martin, and D. Adolf:
Rheology of Electrorheological Fluids. Phys. Rev. Letters 68 (1992), 1519–1522.
DOI 10.1103/PhysRevLett.68.1519
[27] K. Hutter, A. A. F. van de Ven:
Field Matter Interactions in Thermoelastic Solids. Lecture Notes in Physics, Vol. 88, Springer-Verlag, Berlin, 1978.
MR 0550607
[28] O. Kováčik, J. Rákosník: On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czechoslovak Math. J. 41 (1991), 592–618.
[29] J. L. Lions:
Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Paris, 1969. (French)
MR 0259693 |
Zbl 0189.40603
[30] J. Málek, J. Nečas, M. Rokyta, and M. Růžička:
Weak and Measure-Valued Solutions to Evolutionary PDEs. Applied Mathematics and Mathematical Computations, Vol. 13. Chapman & Hall, London, 1996.
MR 1409366
[32] J. Málek, J. Nečas, and M. Růžička:
On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains. The case $p\ge 2$. Adv. Differential Equations 6 (2001), 257–302.
MR 1799487
[33] J. Málek, K. R. Rajagopal, and M. Růžička:
Existence and regularity of solutions and the stability of the rest state for fluids with shear dependent viscosity. Math. Models Methods Appl. Sci. 5 (1995), 789–812.
DOI 10.1142/S0218202595000449 |
MR 1348587
[34] A. Milani, R. Picard:
Decomposition theorems and their application to non-linear electro- and magneto-static boundary value problems. Lecture Notes in Math., Vol. 1357, Springer-Verlag, 1988, pp. 317–340.
MR 0976242
[35] Y. H. Pao:
Electromagnetic forces in deformable continua. Mechanics Today, Vol. 4, S. Nemat-Nasser (ed.), Pergamon Press, 1978, pp. 209–306.
Zbl 0379.73100
[36] M. Parthasarathy, D. J. Klingenberg: Mechanism and models. Materials, Sciences and Engineering R17 (1966), 57–103.
[37] A. Prohl, M. Růžička:
On fully implicit space-time discretization for motions of incompressible fluids with shear dependent viscosities: The case $p\le 2$. SIAM J. Numer. Anal. 39 (2001), 241–249.
MR 1860723
[39] K. R. Rajagopal, M. Růžička:
Mathematical modelling of electrorheological materials. Cont. Mech. and Thermodynamics 13 (2001), 59–78.
DOI 10.1007/s001610100034
[40]
Helsinki research group on variable exponent Lebesgue and Sobolev spaces.
http: //www.math.helsinki.fi/analysis/varsobgroup/.
[41] M. Růžička:
A note on steady flow of fluids with shear dependent viscosity. Proceedings of the Second World Congress of Nonlinear Analysts (Athens, 1996). Nonlinear Anal. 30 (1997), 3029–3039.
MR 1602945
[42] M. Růžička:
Flow of shear dependent electrorheological fluids: Unsteady space periodic case. In: Applied Nonlinear Analysis, A. Sequeira (ed.), Kluwer/Plenum, New York, 1999, pp. 485–504.
MR 1727468
[43] M. Růžička:
Electrorheological fluids: Modeling and mathematical theory. RIMS Kokyuroku 1146 (2000), 16–38.
MR 1788852
[44] M. Růžička:
Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, Vol. 1748. Springer-Verlag, Berlin, 2000.
MR 1810360
[45] C. Truesdell, W. Noll:
The Non-Linear Field Theories of Mechanics. Handbuch der Physik, Vol. III/3. Springer-Verlag, New York, 1965.
MR 0193816
[46] T. Wunderlich: Der Einfluß der Elektrodenoberfläche und der Strömungsform auf den elektrorheologischen Effekt. PhD. thesis, University Erlangen-Nürnberg, 2000.
[47] T. Wunderlich, P. O. Brunn:
Pressure drop measurements inside a flat channel—with flush mounted and protruding electrodes of varable length—using an electrorheological fluid. Experiments in Fluids 28 (2000), 455–461.
DOI 10.1007/s003480050405