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MODELING, MATHEMATICAL AND NUMERICAL ANALYSIS 

O F ELECTRORHEOLOGICAL FLUIDS* 

MICHAEL RUZICKA, Freiburg 

Abstract. Many electrorheological fluids are suspensions consisting of solid particles and 
a carrier oil. If such a suspension is exposed to a strong electric field the effective viscosity 
increases dramatically. In this paper we first derive a model which captures this behaviour. 
For the resulting system of equations we then prove local in time existence of strong solutions 
for large data. For these solutions we finally derive error estimates for a fully implicit time-
discretization. 

Keywords: Maxwell's equations, electrorheological fluids, constitutive relations, Galerkin 
approximation 
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0. INTRODUCTION 

Many electrorheological fluids (abbreviated: ERFs) are suspensions consisting 
of particles and a carrier oil. These suspensions change their material properties 
dramatically if they are exposed to an electric field. The observed increase of the 
measured shear stresses (or the measured viscosity) is essentially due to the exis­
tence of particle structures forming in the presence of an electric field hindering 
the flow and resulting in a higher, apparent viscosity. For an overview especially 
of microscopic models and explanations in electrorheology we refer the reader to 
Parthasarathy/Klingenberg [36]. 

In the first section we develop a model which captures the above described fea­
tures. There are many ways to model ERFs and we refer the reader to the discussion 
in [39], [43], [19]. Here we model the ERF in a homogenized sense within the frame­
work of continuum mechanics and follow the procedure from Rajagopal/Ruzicka [39], 
(cf. [44], [19]). In particular we take into account the complex interaction of the 

*This work has been partially supported by the DFG research unit "Nonlinear Partial 
Differential Equations: Theoretical and Numerical Analysis". 
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electro-magnetic fields and the moving liquid, thus treating the electric field as a 
variable that is determined by Maxwell's equations. The final system describing the 
motion of ERFs is derived from the general balance laws of thermodynamics and 
electrodynamics by a non-dimensionalization and a subsequent approximation. 

In the second section we show the existence of strong solutions for the mechanical 
part of the system describing the flow of ERFs, i.e. the balance of mass and momen­
tum. The constitutive relation for the extra stress tensor implies that the system 
possesses p-structure, where however p = p(|E|2) is a material function and not a 
constant. Thus the natural functional setting are generalized Lebesgue and Sobolev 

spaces. The basic properties of these spaces can be found in Kovacik/Rakosnik [28] 
(cf. Diening [10], [11], Diening/Ruzicka [15], [16], [17] for more recent results and the 
web-page [40] for up-to-date information). The method presented here is based on 
ideas developed in [31], [32], [6], [30], [33] (cf. [21], [13] for an overview of recent re­
sults for generalized Newtonian fluids) to handle situations when the elliptic operator 
is monotone, but due to the properties of the convective term the theory of monotone 

operators is not applicable. Our presentation follows the treatment in Diening [12], 
Diening/Ruzicka [14]. 

In the third section we prove error estimates for the difference between a strong 

solution of the continuous system and a weak solution of the fully implicit time-
discretization of this system under the additional assumption that p = const. In 
contrast to the mathematical analysis there are only few numerical results for such 
a system (cf. [5], [4], [37], [13]). Here we generalize the treatment of Diening/Prohl/ 
Ruzicka [13] to the case that the extra stress tensor is not derived from a potential. 

1. MODELING 

We start by stating Maxwell's equations. Here we use the so-called "statistical for­
mulation", which is based on a "dipole-current-loop" model (cf. Eringen/Maugin [20], 
Hutter/van de Ven [27], Grot [25], Pao [35]): 

dB 
(i.i) c u r l E = " a P 

dD e 

(1.2) curlH-= — + J , 
(1.3) divD e = qe, 

(1.4) divB = 0, 

where E is the electric field, B the magnetic flux density, H is the magnetic field given 
by H = / io_ 1B — M with the magnetization M, D e is the dielectric displacement 
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given by D e = P + £nE with the electric polarization P , J the current density, qe the 
density of the free electric charges and so and fio denote the dielectric constant and 
the permeability in vacuo, respectively. 

Now we state the thermo-mechanical balance laws. The balance of mass and 
momentum are1 

(1.5) £ + Ddivv = 0, 

(1.6) Ov-divT = f + fe, 

respectively, where g is the mass density, T the Cauchy stress tensor2, f the me­

chanical force density and fe is the electro-magnetic force density which is given by 
(cf. pages 284-285 of [35])3 

(1.7) fe = q e 5 + [J + P - [Vv]P + (div v)P] x B + [VB]TA1 + [V£]P 

where £ is the effective electric field strength defined as 

(1.8) £ = E + v x B , 

J the conductive current density given by 

(1.9) J = J - qev 

and M, the effective magnetization defined through 

(1.10) M = M + v x P . 

The balance of angular momentum takes the form 

(1.11) x x Dv - div(x x T) = x x f + le, 

in which le denotes the electro-magnetic torque density (cf. p . 284-285 of [35]) given 

by 

(1.12) le = x x f e + P x £ + M x B . 

1 The material time derivative is denoted by a superposed dot or by d/dt. 
2 T is introduced via t = T • n, where t is the Cauchy stress vector and n the outer unit 

normal vector. 
3 Here and in the following we use the notation [Vv]w = (wjdv{/dxj)._- 2 3 , where 

the summation convention over repeated indices is used. We will use that convention 
throughout this paper. 
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The balance of total energy takes the form 

(1.13) Q^ (e + | v • v) = div(TTv - q) + (f + fe) • v + w + we, 

where e denotes the specific internal energy, q the heat flux, w the mechanical energy 

production density and we the electro-magnetic energy supply density which is given 
as (cf. p. 284-285 of [35]) 

(1.14) ii7e = , 7 - £ + £ - P - M - B + £ - P d i v v . 

Using (1.6) together with (1.14), we obtain from (1.13) the balance of internal energy 
according to 

(1.15) 0e + divq = T . L + 4 7 - £ + 5 - P - M - B + P . £ d i v v + w, 

where L = Vv is the velocity gradient We interpret the second law of thermody­
namics in the form of the Clausius-Duhem inequality 

(1.16) gfi + div^-j^O, 

where rj is the specific entropy and 9 the absolute temperature. 

The system (1.1)—(1.4), (1.5), (1.6), (1.15) and (1.16) which describes the motion 
of the liquid has far more unknowns than equations. It is rendered determinate 
by providing appropriate constitutive relations reflecting the material properties. 
Towards this end, we will assume that 

(1.17) Q, 9, V0, v, D, E, B, 

where D = | ( L + LT) is the symmetric velocity gradient, are the independent vari­
ables and thus we provide constitutive relations for 

(1.18) e,r), T, q, P , M,J 

of the form 

(1.19) / = /(<?, 0 ,V0,v ,D,E,B) , 

where / stands for any of the quantities in (1.18). 
Both the material and the balance equations are subject to invariance require­

ments. It is well known that the mechanical balance laws (1.5), (1.6) and (1.15) are 
form-invariant under Galilean transformations given by 

(1.20) x* = Qx + v0t + b 0 , t* = *, 
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where v0 , bo are constant vectors and Q is a time independent orthogonal tensor, 
while Maxwell's equations (1.1)-(1.4) are form-invariant under Lorentz transforma­
tions. We are interested in non-relativistic effects and it is well-known that there 
are problems with consistent invariance requirements for all thermo-mechanical and 
electro-magnetic balance laws and constitutive equations in a non-relativistic situ­
ation (cf. [25], [38], [44]). To avoid these difficulties we shall make the following 
invariance requirements: We assume that the quantities (1.18), describing the ma­
terial properties, are invariant under Galilean transformations (1.20)4. Moreover we 
require that all balance laws (1.5), (1.6), (1.15), (1.16) and (1.1)—(1.4) are form-
invariant under Galilean transformations (1.20). These two requirements imply con­
sistent transformation formulae for all necessary quantities (cf. [44]). In particular, 
we obtain from the invariance requirements that the constitutive relations (1.19) 
are isotropic functions of their arguments and that (1.19) has to be replaced by 
(cf. Grot [25]) 

(1.21) / = / (e , f l ,Vfl ,D,f ,B) , 

where / stands for any of the quantities in (1.18). 

In addition to restrictions placed on the constitutive response functions by the 
invariance requirements we have additional strictures due to the requirement of the 
second law of thermodynamics. We shall now determine the restrictions imposed by 
requiring that all admissible processes of the body, i.e. processes compatible with 
the balance laws and the constitutive response functions, meet the Clausius-Duhem 
inequality (1.16). Introducing the specific Helmholtz free energy ip through 

(1.22) </> = e - 7 , 0 - - £ - P , 
Q 

and substituting it into (1.16) we obtain, with the help of the energy balance (1.15) 

and the balance of mass (1.5), the dissipation inequality 

(1.23) -o(t/> + T)0) + T • L - S ^ l - t P - A l B + J - 5 ^ 0 . 
u 

4 Note that one usually assumes that the constitutive relations depend on L instead of D, 
and then one deduces from the principle of material frame indifference, i.e. (1.20)i is 
replaced by x* = Q(i)x + c(i), that the dependence on L has to reduce to a dependence 
on D only. In fact, this is the only relevant consequence of the stronger requirement of 
material frame indifference for us which cannot be obtained from the requirement that 
the material properties are invariant under Galilean transformations (1.20) only. 
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From (1.21) and (1.22) we get that i\) = ^(g,0, V0 ,D ,£ ,B) . If we now compute ip 

explicitely we can re-write (1.23), also using (1.5), as 

+ T.w-^(v--a^-(^ + P) .< + ir.oa 
Using the linearity of (1.24) with respect to the dotted quantities and W and their 
independence on the arguments appearing in the constitutive relations (1.21) one 
easily deduces (cf. Coleman, Noll [9], Truesdell/Noll [45], Grot [25]) 

(L25) " = -%' Me=0- Hh0' 
* - ' % • " - « & • T T = T > 

and the reduced dissipation inequality 

(1-26) ( T + , | l ) .D- i^ + J . O 0 , 

where ijj, 77, P and ,/Vt are functions of D, 0, £ and B only. 

1.1. Electrorheological approximation 
The equations derived in the last section may be simplified in view of electrorheo­

logical applications. Towards this end it is recommendable to carry out an appropri­
ate non-dimensionalization with a subsequent approximation. All assumptions made 
in this section are based upon our understanding of the behaviour of ERFs, both 
from the theoretical and experimental point of view (cf. [7], [8], [18], [44], [46]). 

Firstly, we shall assume that the Cauchy stress tensor T does not depend on the 
electric flux density B, i.e. 

(1.27) T = T(D ,0,V0,D,£). 

This assumption reflects the observation that the material properties of an ERF do 
not change if a magnetic field is applied, because surely the particles in an ERF bear 
no magnetic properties. 

Secondly, we shall assume that we are dealing with a dielectricum, i.e. 

(1.28) M = 0 where M = M + v x P . 

Note that this assumption ensures that an apparent magnetization can only be gen­
erated by a moving polarized fluid (cf. [25]). This common assumption is a crucial 
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point for deriving the so-called "quasi-electrostatic equations". In view of (1.25) the 
assumption (1.28) also implies that the Helmholtz free energy -0, and thus also the 
polarization P and the entropy 77, are only functions of D, 0 and £. 

Thirdly, we shall assume that the fluid is electrically non-conducting, i.e. 

(1.29) J = 0. 

This assumption may not be fully justified in general, because some ERFs exhibit a 
certain electrical conductivity which is often due to the content of water. However, 
many of them are free of water and have very low electrical conductivity (for example 
the polyurethane dispersions described in detail in [7], [8]), and thus we may restrict 
ourselves to such a class. 

In order to reach the final electrorheological approximation and to determine and 
retain terms that are dominant and discard others that are insignificant, we will 
carry out a dimensional analysis which follows closely the one in [38], [44]. Towards 
this end we may introduce the following dimensionless quantities5: 

(1.30) • - • , s = |-, r - f * - £ , - - £ . - - £ . 
-fro L*o Qo IO Vo Lo 

i = - p = — -=--?- f = — 8= — 
£0 S0E0 Qo /o #0 

where the quantities with the subscript "0" are appropriate characteristic quantities 
of the problem in question. In typical problems and for many ERFs (cf. [7], [8]), we 
envisage that 

(1.31) E0 ~ 3 • (104 - 106) V m - 1 , V0 ~ (10 - 3 - l ) m s - 1 , 

L0 ~ 5 • (10 - 4 - 10 - 3) m, no ~ (10 - 2 - 10 - 1) kg (m s ) - 1 , 

*o ~ (10 - 3 - l ) s , 0o ~ 103kgm"3 . 

The time to may be either a characteristic electric or hydrodynamic time, depending 
on the specific problem. Moreover, g0 and rjo are the density and the dynamic 
viscosity of the fluid in the absence of an electric field, respectively. Using (1.31), 
the Reynolds number Re = (D0 L0 Vo)/rjo and the Strouhal number Str = Lo/(Vo*o) 
lie in the range 

(1.32) 5 - 1 0 - 3 ^ R e - ^ 5 - 1 0 2 and 5 • 10 - 4 ^ Str ^ 5 • 103, 

5 In this section, dimensionless quantities and operators are denoted by a superposed bar. 
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respectively. Magnetic quantities are missing in (1.31). No experimental observation 
is known to us that shows that the magnetic field plays a significant role in elec-
trorheological applications. Usually, no external magnetic field is applied and thus 
B is only induced due to the electric field. We interpret the secondary role of B 
in ERFs through the assumptions that 

(!-33) jr£r = °M> 
Bo clt0 

resulting in 
(1.34) BQ ~ (lO"16 - 10"10) Vs/m2. 

Recall that c « 3 • 10 8 ms _ 1 denotes the speed of electro-magnetic waves in vacuo. 
(1.33) is consistent with the assumption that the magnetic flux density is only induced 
by oscillations of the electric field and/or the motion of a polarized body (cf. (1.42)). 
Let us introduce a small non-dimensional number e through 

(1.35) e = 10"3, 

which measures the importance of the terms. The situation described above— 
together with an assumption that there are only few free charges in the fluid—can 
thus be summarized as 

(1.36) i2. = 0(e
3) - 0(e% ^ = 0(e3) - 0(e% 

cto c 

M = 0 ( 0 - <?(*), f^ = 0(e3), 
Do £o-fro 

^ i ° = o(e-) - o(s«), §--£ = o(i). 
-cto to no C 

The non-dimensionalized system of balance laws may then be approximated by re­
taining terms up to order £2, while neglecting terms of higher order. 

Firstly, let us discuss the role of E in the constitutive relations. It follows from 
the definition of E that 

(1.37) £ = J-- = E + - ^ v x B - E + 0(s5), 
-fro -fro 

where we used that 

(1.38) Y^o=o(e5)-O(s'). 
-fro 

Thus, we can replace E by E in all non-dimensionalized constitutive relations. 
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The dimensionless form of Maxwell's equations (1.1)-(1.4) may be obtained upon 

using the definitions of H, D e , (1.28), (1.36) and (1.37) as 

chvE + oUvP = ^ r + 0(e 5) , c l n 4 E + | ^ ^ = 0, divB = 0, 
SQ -C/0 Eo to ot 

0(e3) 0(e5) 

—T-D . -̂ o Vo — T / _ -ON ^o L0 d .= — qoL0 E0Vo _e_ 5 
C U r l B + J o J C U r l ( V X P ) = 5 ^ 

O(l) O(l) 0( e3) 

where in 0(e5) only terms coming from (1.37) are included and where we also used 

the relation eol^o = c~2> Neglecting terms of 0(e3) , we obtain the electrorheological 

approximation of Maxwell's equations according to6 

(1.39) div(£0E + P) = 0, 

(1.40) curlE = 0, 

(1.41) divB = 0, 

(1.42) — curlB + curl(v x P) = __£°^±___? 
fio ot 

where P = P(£,0,E) . 

Now we turn to the approximation of the thermo-mechanical balance laws. The 

conservation of mass (1.5) remains unaffected. In the momentum equation (1.6) we 

re-write the electro-magnetic force fe using (1.8), (1.28), (1.29) and then use (1.36) 

and (1.37), which leads to 

/ , .Qx QOVQLO _d~ QoV0
2 _ - = _ - _ To - r - = 

(L43) i^p^w + ^ [ V v ] v - ^ d l v T 

= f L° f + q°L° (~E + V°B° " V X B U B°L° — x B 
So E0 £Q EQ \ Eo ) Eo to dt 

0(e3) 0(e*) 0(e 5 ) 

+ ^ ( [ V P j v + (divv)P x B + v x ([VB]P)) + [VE]P + 0(e5) , 
Eo 

0(e*) 

where in 0(e5) only terms coming from (1.37) are included. We see that all under-

braced terms on the right-hand side of (1.43) have to be neglected. We shall retain 

G Since A l = 0, we can rewri te (1.39)-(1.42) in terms of E , B , H, D e only. 
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the mechanical force term and the term with the Cauchy stress. Furthermore, one 
easily computes that 

(1.44) 

(1.45) 

ßo VQ LQ 

ЄQ EQ <O 

QoV2 

eoE2 

' 0(1) - 0(є 2 ) if E% ~ 9 

= < Oíє- - O ^ є 1 ) if £ 0
2 ~ 9 

. 0 ( є - 2 ) - 0(1) if E2 ~ 9 

0(1) - 0(є 2 ) if E2 ~ 9 

= { Ofє- - O t є 1 ) if £ 2 ~ 9 

0 ( є - 2 ) - O(l) if £ 2 ~ 9 

10 1 2 V 2 m- 2 , 

10 1 0 V 2 m- 2 , 

1 0 8 V 2 m - 2 , 

10 1 2 V 2 m- 2 , 

10 1 0 V 2 m- 2 , 

108V2m~2 . 

Therefore also the first and the second term on the left-hand side of (1.43) have to 

be kept. With regard to the approximation of the other thermo-mechanical non-

dimensionalized equations, we only replace £ by E since we have no indication of 

the behaviour of the other quantities. 

Therefore, the electrorheological approximation of the thermo-mechanical balance 

laws is given by 

(1.46) 

(1.47) 

(1.48) 

(1.49) 

CVQO - kA8 

g + Odiv v -= 0, 

Ov-divT = f + [VE]P 
rdP ^ dn 

" \ ~dě 

(T - TTI) D 

É + --J tr D ) ö = (T - тгl) • D + w, 

(Vð) • q 
>o, 

where we used the definition of the specific heat cv and of the thermodynamic pres­

sure 7r according to 
d-^) _ _2<9</> 

Cţi — 
д 2' ҡ = ~в~~-

Moreover cv, P , IT and xp are functions of Q, 6 and E; while we have for the Cauchy 

stress T = T(O,0,V0,D,E). 

1.2. Constitutive relations 
Now we will develop a constitutive theory for ERFs. In order to keep the already 

very long and complicated formulas as simple as possible we keep the dependence 
on V0 only in the constitutive relation for the heat flux q and assume that 

(1.50) q = -kV , 

where the thermal conductivity k is a positive constant. In all other constitutive 
relations we drop the dependence on ~76. We also restrict ourselves to the case of an 
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incompressible ERF, i.e. 

(1.51) t r D = 0, 

and consequently we also drop the dependence on g in all constitutive relations. 

Moreover we assume a linear dependence of the polarization P on the electric field E, 
i.e. 

(1.52) P = X*(0)E, 

where xE is the dielectric susceptibility. The Cauchy stress can be splited according 
to T = —7rI + S. Prom the above assumptions and (1.27) we get that the extra stress 

tensor S is of the form 

(1.53) S = S(0,D,E). 

From representation theorems (cf. the appendix of [20] and the references stated 
there) it follows that the most general form for S is given by 

(1.54) S = a 2 E <8> E + a 3 D + a 4 D 2 + a 5 (DE <g> E + E <g> DE) 

+ a 6 (D 2 E <g> E + E <g> D 2E), 

where a;, i = 2 , . . . 6 may be functions of the invariants 

(1.55) 0, |E|2 , t r D 2 , t r D 3 , tr(DE<g)E), tr(D2E<g>E). 

In view of certain peculiarities in the behaviour of the normal stress differences in 
the case a4 ^ 0 even in the absence of an electric field (cf. [33]) and due to previous 
mathematical investigations for shear dependent viscous fluids, which suggests that 
terms involving D 2 can be treated as a perturbation (cf. [31], [33]), we assume that 

(1.56) a4 = 0, a6 = 0. 

Based on experimental data (cf. [26], [3], [2], [1], [47]) we assume that in the presence 
and the absence of an electric field the ERF behaves like a generalized Newtonian 
fluid with power p, where the power p can depend on the magnitude of the electric 
field |E|2 . Moreover, we restrict ourselves to the case that the material functions a2 , 
a 3 and as depend only on the invariants 0, |D|2 and |E|2 and that all terms have the 
same growth behaviour. Thus we deal with the following model for the extra stress 
tensor S 

(1.57) S = a 2 1 ( ( l + IDI 2)^" 1 ' / 2 - 1)E ® E + (a3i + a 3 3 |E | 2)( l + |D | 2 )^" 2 ) / 2 D 

+ a 5 i ( l + |D|2)(p-2) /2(DE <g> E + E <g> DE), 
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where a ^ are constants and p = p( |E | 2 ) is a C1-function such that 

(1.58) l < P o o O ( | E | 2 K p 0 . 

To ensure the validity of the Clausius-Duhem inequality we further require that the 

constant coefficients aij and the function p are such that (cf. [44, Lemma 1.4.46]) 

4 
(1.59) a31 > 0, a33 > 0, a33 + - a 5 i > 0, 

( 2^/a3~3~v

/2a51 if a 3 3 ^ | a 5 1 , 
(1.60) k(po)\a21\<\ r-

I y f (a33 + fa 5i) if | | a5 i | ^ a33, 

where fc(Po) = 1 if Po ^ 3 and fc(Po) > 1 is a computable constant for po > 3. 

Note that these requirements ensure that the operator induced by — divS(D,E) is 

coercive. 

2. FLOWS OF SHEAR DEPENDENT ELECTRORHEOLOGICAL FLUIDS 

In the previous section we have shown that the isothermal flow of an incompressible 

shear dependent ERF is governed by the following system7 

(2.1) 
divE = 0, 

curlE = 0, 

(2.2) 
дtv - div S + [Vv]v + Vтг = f + x E [VE]E, 

divv = 0, 

(2.3) 
divB = 0, 

(2.3) 
ЏQ1 curlB + x^curЦv x E) = (є0 + x ß )ð ť E, 

(2.4) S - D + uj = 0, 

where the extra stress tensor S is given by (1.57), (1.58). 
The system (2.1)-(2.4) is separated. We first solve the quasi-static Maxwell's equa­

tions (2.1) for the electric field and then seek for the velocity field by solving (2.2). 
Knowing E and v we can solve (3.2) and (2.4). Note that the equation (2.4) has 
to be interpreted as an equation for the mechanical energy supply density w. It 
was already pointed out in the previous section that the magnetic induction B is of 

7 We have divided equation (147) by the constant density go and adapted the notation 
appropriately 
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secondary importance, which is reflected by the structure of the above system. More­
over, the quasi-static Maxwell's equations (2.1) are widely studied in the literature 
(cf. the overview article Milani/Picard [34]). Since in this investigation of ERFs we 
are mainly interested in the velocity field v, we shall only consider the system (2.2), 
in which E is assumed to be any given vector field, having certain regularity prop­
erties. Moreover, for simplicity we shall complete (2.2) by space periodic boundary 

conditions and an initial condition vo. 

In order to prove existence results for the system (2.2) we need some structure 
conditions for the extra stress tensor S, which unfortunately are stronger than the 
conditions we have to assume for the validity of the Clausius-Duhem inequality, 
which is a physical requirement. In the following we assume that the constant coef­
ficients c*ij and the function p are such that the operator induced by - div S(D, E) 
is uniformly monotone, i.e. 

(2.5) ^ i ( D » E ) B Bu > 7 l ( i + | E | 2 ) (1 + |D |2)WIE l2)-2>/2 |B|2 

oL>ki 

is satisfied for all B , D G l : - - { D G R3*^, t r D = 0}, and that the following growth 

conditions are satisfied for i,j, k,l,n = 1,2,3, 

(2.6) ^ ( D , E ) < 7 2 ( 1 + |E|2)(1 + |D|2)WIEI2)-2)/2, 
oL>ki 

(2.7) l ^ i ^ l M < -yft|E|(l + |E|3)(1 + |D|3)("(lEla)-1)/-(l + ln(l + |D|-)). 
I o£jn 

Conditions for a^ and p that ensure the validity of (2.5) can be found in [44, Chap­
ter 1]. We will show that the coercivity, i.e. that 

(2.8) S(D,E) • D > c(l + |E|2)(1 + | D | 2 ) ( P ( I E I 2 ) - 2 ) / 2 | D | 2 

holds for all D e X, is a consequence of (2.5).8 

Before formulating the main result of this section, we introduce some notation. 
Let ft = (0,L)3, L € (0,oo) be a cube in IR3 and denote Tj = dCt n {XJ = 0} and 
r i + 3 = dft n {XJ = L}, for j = 1,2,3. For T € (0,oo), we denote by QT the 
time-space cylinder I x ft, where I = [0,T] is a time interval. By V(ft) we denote 
the space of smooth periodic functions with mean value zero. Let further q > 1 
and k > 0. Then (L9(ft), || • \\q) and (Wk>q(Sl), \\ • \\k,q), respectively, is used for the 
usual Lebesgue and Sobolev spaces, of periodic functions with mean value zero. By 

J As was already pointed out the coercivity and the Clausius-Duhem inequality are almost 
equivalent. In fact, if p is independent of |E| than these two requirements are the same. 
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(/> g) :— fn fd dx we denote the scalar product with respect to space. We also need 
Lebesgue and Sobolev spaces with variable exponents, which are denoted by LP^(G) 
and VVfc'P(')(G), respectively, where G = £1 or G = QT. For a given p(-) G L°°(G), 
1 < Poo ^ p(x) ^ Po < oo, we define the modular 

6p(f) = QPMf)~ f \f(y)\piy)dy. 

JG 

Similarly to the Luxemburg norm in Orlicz spaces we define 

| | / | | p ( . ) : = i n f { A > 0 | ^ ( A - 1 / ) < l } , 

which is a norm on the generalized Lebesgue space 

LP^(G) := {/ G Ll(G) \ Qp(\~
lf) < oo for some A > 0}. 

Generalized Sobolev spaces are defined analogously We refer to Kovacik/Rakos-
nik [28] for a detailed treatment of these spaces. Moreover, we denote by Lq(I;X) 
the Bochner spaces which are equipped with the norm (ff \\ • H^ds) Q- ^n t n e 

following we use for the partial derivative with respect to time the symbol dt. We 
shall further make frequent use of spaces of divergence free functions defined by 

V:={ipeV(n): div</> = 0}, 

Vp := the closure of V with respect to the ||V • ||p-norm, 

and use the following expressions, for functions v and E defined on the space-time 

cylinder QT, 

(2.9) l(t,v) := [ ^ ( - M < ) , E ( t ) ) A ( V v ) ( 0 1 ? t | ( v v ) ( f ) d j ! | 

JQ oL>ki 

(2.10) J(t,v) := f ^i2^h^)lDij{dtVmDklidtV){t)d^ 

which are related to the extra stress tensor S. 
We are seeking solutions v of the system (2.2) completed with the initial condition 

(2.11) v ( 0 ) = v o , 

and with space-periodic boundary conditions 

(2.12) v L = v L , VvL = V v L , TTL = 7 T L , v ' Tj i r J + 3 , iij irj+31 Tj irj+3' 

for j = 1,2,3. Now we can formulate the main result of this section. 
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Theorem 2.13. Assume that the extra stress tensor S satisfies (2.5)-(2.7) and 

S(0,E) = 0. Let v0 G TV2'2(ft) n Vp be a given initial velocity, f G C(I; VV1'2(H)), 

a tf G C(I; L2(f>)) be a given force, E G VV1'00^; W^°°(Q)) be a given electric field 

and let p = P(|E|2) be a ^-function with poo ^ P(|E|2) ^ p0. If 

3 
- < Poo ^ Po ^ 2 

then there exists a time T* > 0. such that a strong solution v of the system (2.2) 

exists on V := [0,T*]. This solution satisfies 

fT* r -G 
(2.14) esssup| |a tv(s) | | l+ / l(t, v)*-fe" + J(* ,v) d* ^ C(f, v 0 ,E) . 

sGP JO sGP .10 

In particular we have that for 1 < r < 6(poo — 1) 

5poo—6 • 9 3p, 
(2.15) v € LP°° 2

 ~P~ (/ ' ; W 2 ' P ~ + I (íl)) П С (Г; Vr), 

Роо(5роо-6) Зроо . 

d ťv б L Í - P - - - ) ^ - 1 ) řr";W ' Р « + 1 ( П ) ) nL°°(T;L 2(fž)), 

a2veL2(/';(F2r). 

R e m a r k 2.16. With a more refined technique one can show that the statement 
of the theorem is valid for | < poo ^ Po ^ 2 (cf. [14, Theorem 21]). 

The main problem in the proof of the previous theorem consists in the identification 
of the limit 

lim/ /s(Dv J V,E)D(V)da;dť 
N->°?lo Jíl 

where vN is some approximate solution of (2.2). The method used here is based 
on Vitali's convergence theorem and the almost everywhere convergence of D v N . 
This method was developed in [31], [32], [6], [30], [14] to handle situations when the 
theory of monotone operators fails to identify the above limit. It is worth noticing 
that unsteady problems for ERFs cannot be treated with the help of monotonicity 
methods even for large Poo due to the non-standard growth of the governing system, 
i.e. within the classical Sobolev spaces our assumptions (2.5)-(2.7) imply 

C(l + | D | ) P ~ " 2 | D | 2 ^ S(D,E) • D ^ C(l + | D | ) P ° - 2 | D | 2 . 

Before we start with the proof of the above theorem we need some preliminary 
results related to the extra stress tensor S. Let us start with an algebraic lemma. 
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We write / = g iff there exist constants Co>Ci > 0 such that 

< ? o / ^ < K C i / , 

where we always indicate on which quantities the constants may depend. 

L e m m a 2.17. For all A , B G Udxd and all q > 1 there holds 

I 
i 
(1 + |B + s(A - B)!)""2 ds =* (1 + |B | + |A|)«-2 , 

/0 

with constants depending on q only. 

P r o o f . The proof can be found in [24, Lemma 8.3]. • 

R e m a r k 2.18. Since |A| + |A - B | ^ 2(|A| + |B|) ^ 4(|A| + |A - B|) we 
immediately obtain from Lemma 2.17 that for all A , B G Rdxd and all q > 1 there 
holds 

ri 
(1 + |B + s(A - B)\y~2 ds = (1 + |B| + |A - B|)«"2 , / 

Jo /o 
with constants depending on q only. 

Lemma 2.19. Suppose that S satisfies (2.5) and (2.6) and S(0,E) = 0. Then 

there holds for all A, B e K*f£ and all E 6 U3 

(a) S(A,E) • A s. |A|2(1 + | A | ) P ( I E I 2 ' - 2 , 

(b) (S(A,E) - S(B,E)) • (A - B) S- |A - B|2( l + |B | + |A|)PdEl2)-2, 

(c) |S(A, E) - S(B, E) | - |A - B|(l + |B| + |A|)^IEI2)-2 , 

(d) | S ( A , E ) | S | A | ( 1 + | A | ) P ( I E I 2 ) - 2 , 

with constants depending on p^, p0 (cf. (1.58)j and 1 + |E|2 only. 

P r o o f . Note that the statement (a) is a special case of (b) by choosing B = 0 
and using S(0,E) = 0. In the same way (d) follows from (c). In order to prove (b) 
one notices that (2.5), (2.6) and Lemma 2.17 yield 

( S ( A , E ) - S ( B , E ) ) - ( A - B ) 

= p^(B + <(A-B),E) 

Jo oDki 

s |A - B | 2 / (1 + |B + s(A - B) | ) p" 2 ds 
Jo 

= - | A - B | 2 ( l + |B| + |A | ) p - 2 , 
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where we used (1 + y2)* = (1 + \y\). From this we immediately obtain 

|A - B | 2 ( l + |B | + |A|) t - 2 ^ c(S(A,E) - S(B,E)) • (A - B) 

< c | S ( A , E ) - S ( B , E ) | | A - B | , 

which delivers the first inequality in (c). For the other inequality we use (2.6) and 
Lemma 2.17 to obtain 

|S(A,E) - S(B,E)I = I / • ^ ( B + 'jA-BKE) _ 
| jO °Dkl 

< C | A - B | ( 1 + | B | + | A | ) P - 2 , 

which finishes the proof. • 

R e m a r k 2.20. Note that in the right-hand sides in Lemma 2.19 one can replace 
l + |B| + |A |by 1 + |B| + | A - B | . 

Now we derive lower bounds for the expressions T(t, v) and J(t, v), defined in (2.9) 
and (2.10), for which we will often simply write T(v) and J(v). They arise from 
testing (2.2) with - A v and "<92v", respectively The expression (1 + IDvp)1 /2 will 
appear quite often, so it is very useful to introduce the abbreviation 

(2.21) Dv:---( l + |Dv| 2) 1 / 2 . 

As a consequence of (2.5) we have 

(2.22) T(t,v) > 7 l [ (Dv(t))p^E^^-2\B(Vv)(t)\2 dx, 
JQ 

(2.23) J(t, v) ^ 7i / (-5v(<))P(lE(t)"2)-2|D(a£v)W|2 dx. 
JQ 

Note that djdkVm = djDkmV + dkDmjV - dmDjkV, which implies 

(2.24) |V 2 v| ^ 3|D(Vv)| ^ 3|V2v|. 

Thus, |D(Vv)| can always be replaced by |V 2 v| (and vice versa) by increasing the 
multiplicative constant. 
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Lemma 2.25. Let S satisfy (2.5) and (2.6). Then for all (sufficiently smooth) v, 
for all 1 ^ r ^ 2, and almost every t £ I there ho1ds: 

(2.26) ||D(Vv)(«)||P < C{l{t,y))'l%I)y{t))2-^^^\\m2_^ 

(2.27) ||D(ftv)(t)||P ^ C( .T (* ,v)) 1 / 2 | j ( J9v(0)^ i^m l^ | | 2 / ( 2_T . ) , 

where 2r/(2 — r) = oo for r = 2. 

P r o o f . Observe that 1 ^ 2/r < oo and 1 < (2/r) ' = 2/(2 - r) < oo. Further 
for 1 -̂  r < 2 we have 

= / ((ov)P- 2 |Dw| 2 ) r / 2 ( J Ďv)( 2 -P» r / 2 dx 
Jíí 

^ ( l(Ďv)P-2|Dw|2da;Y ||(JĎv)<2-*W2 | | 

= ( / ( / 3 v ) p - 2 | D w | 2 d x ) ||(í>v)<2 

/2 
- p ) / 2 | i r 

M 2 r / ( 2 - r ) ' 

Choosing now w = Vv and w = dtv and using (2.22) and (2.23), respectively, we 
obtain the assertions of the lemma for r < 2. The case r = 2 is treated similarly. • 

L e m m a 2.28. Let S satisfy (2.5) and (2.6). For all (sufficiently smooth) v with 
JQ v dx = 0 and almost every t £ I there holds 

(2.29) ||Vv(t)||?~____ < C(I(t,v) + 1), 
1 , I 'oo + l 

(2.30) ||dtv(t)||f____ < CJ-(«, v)"- / 2(I(«,v) + 1 ) ( 2 - P ~ ) / 2 

1 ' l>oo + l 

(2.31) ^ C ( j ( t , v ) + I ( t , v ) + 1). 

P r o o f . From Lemma 2.25 (r H+ -_^ - ) we deduce, also using 2 — p < 2 — poo, 

||D(Vv)|| JH-_ < CI(v)1 /2 | | ( .Dv) ??1 | | j_ s 
ï 'oo+1 2-7)00 

^ciM^lKĎvj^iu 
2 - l i o 

2 -

š C I Í v M l + HDvIlap-)-"1-* 

< C I ( v ) 1 / 2 ( l + C||VDv||^2B_) 
2-Pgo 

ľ o o + 1 ^ 

since JQ vdx = 0. Due to V D v = D(Vv), this implies 

l |D(Vv) | |____^C(I(v) + l). 
7'oo+l 
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From (2.24) and JQ v dx = 0 we get 

l | V v | | ^ < C ( Z ( v ) + l) 

Analogously we can use Lemma 2.5 to get 

| |D(d tv)| |^ < CJ(v)\n(Dv)2-^\\ <* 
2-Po 

ŠCJWÍI + CWVDVWJ^)^** 
I'oo+1 

(2.29) , x 2-Voo 

^C^v^f l + CílW + l ) - ) 2 

^CJ(v)^2(l+l(v))-^ 

Again / n v da: = 0 and Korn's inequality imply 

llftvll! . 3 ^ < C||D(9tv)||^^ ^ CJ{v)l'2{l + I ( v ) ) ^ , 
'7 'oo+l i"oo+-

which proves (2.30). The last inequality follows from Young's inequality. D 

2.1. A priori estimates 
Now we use a Galerkin approximation to derive a priori estimates for approximate 

solutions vN of the system (2.2). These estimates allow the limiting process IV —• oo 
showing the existence of a solution v of the system (2.2). 

Let {u)r} denote the set consisting of the eigenvectors of the Stokes operator de­
noted by A. Let Ar be the corresponding eigenvalues and XN := span-fa*1,..., uN}. 

N 

Note that (u;r, 1) = 0. Define P ^ v := £ (v,u>r) ur. Then we have 

(2.32) A r (u ; r , v N ) = (Au> r ,vN) = ( V u ; r , V v N ) 

and PN: Ws>2 -+ (XN,\\ • ||s,2) are uniformly continuous for all 5 G [0,3] (cf. [42], 
[30]). 

N 

Setting fN = PNf we seek the approximate solution vN(t,x) = £] cN(t)wr(x), 
r=l 

where the coefficients cN(t) solve the Galerkin system (for all 1 ̂  r ^ N) 

(2.33) (dtv
N,ur) + (S(DvN ,E)Du> r) + ([VvN]vN ,ur) 

= ( f ^ , ^ ) - x ' ( E ® E , D ^ ) , 

vN(0) = PNvo. 
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Since the matrix {<jjj,ujk) with j , k = 1,...,1V is positive definite, the Galerkin 

system (2.33) can be re-written as a system of ordinary differential equations. This 

in turn fulfills the Caratheodory conditions and is therefore solvable locally in time, 

i.e. on a small time interval I* = [0, T*). From the assumptions on f in Theorem 2.13 

it follows that fN = PNf G L°°{I;W^2{n)) and dtf
N = PN{dtf) G L 2 (I;L 2 (ft)). 

This implies cN,dtc
N,d2cN G L 2 (I*). Thus vN,dtv

N,d2vN G L2{I*;XN). (Note 

that the norms may depend on IV). To ensure solvability for large times at least for 

this finite dimensional problem we have to establish a first a priori estimate. 

Since v ^ G L2{I*\XN), we can test (2.33) with v ^ and get 

(2.34) \dt\\vN\\2 + <S(Dv",E),Dv") = (fN,vN) -X

E(V® E,Dv") . 

Note that ([VvN]vN,vN) = 0 due to divv N = 0. Prom the coercivity of S 

(cf. Lemma 2.19(a)) and the pointwise inequalities 

(l+y2)^y2^C(q)(y"-l), (1 +y2YA^ > (1 + y2)1^ 

we deduce that the second term on the left-hand side of (2.34) is bounded from below 

by 

C2 f (1 + | E | 2 ) ( | D V W | P ( I E I 2 ) + | D V N | P ~ ) dx-C f 1 + |E| 2dx. 
Ja Jn 

The terms on the right-hand side of (2.34) are bounded from above by 

C2 
2 

/ (1 + |E| 2 ) |Dv" |*~ dx + C||E||2 + C||f | | ; '-. 
Jӣ 

Integration over time and Gronwall's inequality thus imply 

max | |vN | |2 + f f |Dv"|P(lEl2) + | D V N | P ~ dxdt < C(T,f,v0,E). 

In particular we get 

l|c?IU~(/.) < C(Tf,v0,E), l^r^N 

As a consequence we can iterate Caratheodory's theorem to push the solvability of the 

Galerkin system (2.33) up to any fixed time interval / = [0, T]. Hence, independently 

ofiV 

(2.35) | | v " | | i c o ( / i L a ( n ) ) + Qp{lEnQl.(DvN) + | | V v w | | ^ ( Q r ) < C, 

where we have also used Korn's inequality in LPoo{Q). 
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We got the first a priori estimate by using vN as a test function. To derive our 
second a priori estimate we want to use AvN as a test function. The special choice 
of base functions wr ensures that we do not leave Kw, the space of admissible test 
functions. More explicitly we multiply the rth equation of the Galerkin system (2.33) 
by Xrc

N and use (2.32) to obtain 

(2.36) (dtv
N, AvN) + (S(DvN,E),D(Av iV)) + ([VvN]vN, AvN) 

= ( V f i V , V v i V ) - x E ( E 0 E , D ( A v N ) ) . 

Due to the periodicity we have A = -A , and thus 

(2.37) f[VvN}vN.AvNdx= f^l^l^ldx^\\VvN\\l 
jfi jo dxk dxj dxk 

(2.38) - X
E / E ® E • B(AvN) dx = 2X

E f E . | - - -Aj (^-) dx 
jfi jo dxk V dxk I 

^ IL /(J9vN)*lEl2)-2 |D(Vvw)|2dx 
8 jfi 

+ C(7i,E,VE) f (DvN)2-rtW2Ux, 
jfi 

(2.39) fs(DvN,E).B(AvN)dx= f dSij{^''E)Dkl(VvN)Dij(VvN)dx 
JQ JQ OUki 

The right-hand side of (2.39) is bounded from below by 

\T(vN) + -£ / (DvN)*W)-'\D(VvN)\2 dx 
2 2 JQ 

_ 2 i f(DvNyUEV~2\B(VvN)fdx 
8 jfi 

-C ( 7 i ,VE) f (DvN)^E^(l+ln(DvN)2)2dx, 
jfi 

where we used the definition of I, (2.22) and Young's inequality. Thus we have 

(2.40) d.||Vv"||2 + I(vN) + -£ / (j)vw)pdEl2)-2|D(Vvw)|2 dx 
2 jfi 

< C(l + ||Vvw | |! + |(Vfw, VvN ) | + ep(|E|2),fi(Dvw)), 

where we also used the estimate ln(l + y2) ^ c(l + y2)* and p(|E|2) -̂  p0 ^ 2, 
2 -p ( |E | 2 Kp( |E | 2 ) . 
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If p > -£ one can show that | |VvN | | i < Ce\\VvN\\r \\VvN\\2 + eX{vN) (see [30]), 
which enables us to apply Gronwall's inequality after absorbing eX{vN) on the left-
hand side. This would give us a global estimate. If p > | we can show that 
l |Vv N | | | <J C£\\VVN\\P | | V v ^ l ^ + eX{vN) for some constant 1 < R < oo and there­
after absorb eX{vN) on the left-hand side and apply a local version of Gronwall's 
inequality (cf. Lemma 2.52). This would give us an estimate for small times. Nev­
ertheless we will not make use of these facts, since we are also interested in smaller 
values of p than | . 

We will test immediately with udtv
Ndt" to get in addition to (2.40) another es­

timate. Then we will use the resulting two estimates at the same time to derive 
quite strong a priori estimates for vN for values up to p > §. Let us take the time 
derivative of the Galerkin system (2.33): 

(2.41) (d?vN,ur) + ( d , S ( D v N , E ) , D a / ) + (dt{[VvN]vN),u>r) 

- (dtf
N,«>r)-xE(dt(E®E),I>u>r), 

for 1 ^ r < N. Since vN € W2'2(I; Xn), this makes sense and we can even test with 
dtv

N G VVJ '2(/;Xn) resulting in 

\dt\\dtv
N\\2 + (ftS(DvAr

>E),D(^vAf)> + (dt([VvN}vN),dtv
N) 

= (dtf
N,dtv

N) - X
E (dt(E ® E), D(dtv

N)) . 

Similarly as in (2.38) and (2.39) we get 

- X E f dt(E®E)-B(dtv
N)dx < ^ [ (DvNyUE^-2\D(dtv

N)\2dx 
jn 8 jn 

+ C(luE,dtE) f(DvN)2-^E^dx, 
Ju 

f dtS(BvN,E)-B(dtv
N)dx= [ dSijf*N'E)Dkl(dtv

N)Dij(dtv
N)dx 

jn jn oDki 

Jn ocjk 

> I J{VN) + £ J {DvNr^-2\B{dtv
N)\2 dx 

2 2 JQ 

__L f{DvN)^E^-2\B{dtv
N)\2dx 

8 Jn 

- C( 7 i , dtE) [ {DvN)p(W2\l + l n (£v N ) 2 ) 2 dx, 
Jn 
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where we used the definition of J, (2.23) and Young's inequality. This yields 
(cf. (2.40)), also using d ivv N = 0 in the convective term, 

(2.42) dt\\dtv
N\\2 + J(vN) + £ / (DvN)p^-2\Q(dtv

N)\2 dx 
1 Ja 

< C(l + \([VvN]dtv
N,dtv

N)\ + \(dtf
N,dtv

N)\ + \\VvN\\l 

+ ^( |EP),_(DvN)) . 

Recall that 

(2.43) dt||Vvw||l+I(v7V) + ^- / (ov N ) p ( l E l 2 »- 2 |D (Vv w ) | 2 d„ 
2 jn 

^ C( l + HVv^H. + | (Vf" , V v " ) | + ep(|EP),n(DvN)). 

At first sight, we have gained nothing. We have to control one more bad term, namely 
\([VvN]dtv

N,dtv
N)\, but we only got more information about the time derivative 

of vN. But the critical term || VvN | |g , which gave the lower bound for p, has no time 
derivatives. The next lemma shows that J(vN) reveals indeed more information. 

Lemma 2.44. Let 1 < q < oo. then for almost every t € I 

(2.45) d.(||-5v(t)||«) < CJ(t,v)He2q_pmt)nn(Dv(t)))1/2 

< ej(t,v) + C£^29-p(|E(0l2),fiPvW), 

where __ ,_ P ( |E | - ) , . . ( -5V) = fn(Dv)2"-^E^ dx even if2q-p(\E\2) < 1. 

P r o o f . Note that 

Hence 

dt((Dv)<>) = q(Dv)"-2(Djkv)(dtDjkv). 

dt(\\Dv\\"q)^q / (_)v)*-1 | |__Dv| |dr 

J__ 
= q f (Dv)^\D(dtv)\(Dv)q-*pdx 

Jn 
^ qCJ(v)i(g2q_pm2hQ(Dv))^ 

by Holder's inequality, which proves the first assertion. The second follows from 
Young's inequality. • 
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This lemma enables us to produce dt{\\DvN ||*) on the left-hand side of (2.42) if we 
add C^29-P(|E|-),Q(£ )V) to the right-hand side. Thus we have three terms to control: 

(2.46) | |Vv"||i, \({VvN]dtv
N,dtv

N)\, g2q-pm2)MDyN). 

The first and the second one will be easier to estimate for large q, but the third 
one for small q. The problem now is to find the optimal choice for q. We start by 
examining which values of q are needed for the first and the second term. In view 
of local Gronwall's inequality (cf. Lemma 2.52), we will be able to control arbitrary 
powers of \\DvN\\* and Hftv*^. 

Lemma 2.47. Let q > 9~|p°°, then there exists a constant R\ = Ri(poo) > q, 
such that 

\\Vv\\3^Ce\\Dv\\K>+el(v)+e. 

Proof. If q ^ 3, then there is nothing to prove, so assume q < 3. We interpolate 

L3(fl) = [L"(Q,),L3^(!_)]« with 6 = (jjjf_.~, 1-0= %2-l} a n d o b t a i n 

l lVvlli^UVvllf-^IIVvlli^. 

If 30 < Poo • there exists an 6 > 1 such that 

H V v l l i ^ a i l V v l l f - ^ ' + e l l V v l l ^ 

< C,||Vv||f-9)y+£C||Vv||^3,^ 

< C £ | | V v | | f - ^ ' +£C(I(V) + 1), 

where we used Lemma 2.28. So by Korn's inequality 

\\Vv\\3<_Ce2\\Dv\\fl-W'+e2l{v)+e2. 

We still have to verify 30 < Poo, but this is equivalent to 

_£___^<P^^<(Z, 
3poo -q 2 

which holds due to the assumption on q. • 

588 



Lemma 2.48. Let q > 9 |p°°. then there exist constants R2 = IMPoo) > 2 and 
R3 = I?3(poo) > Q such that 

K[vv]atV,atv)| ^ ej(v) + c£(\\dtv\\^ + uov||f +1). 

P r o o f . Note that Lemma 2.25 (r i-> 0
 2q . ) implies 

(2.49) HD(ftv)|| ». < C J ( v ) - | | ( . O v ) | | _ _ 
2 - I ' c » + ' i 2-i»oo 

śCJ(v)ЦĎv\\-q 
2 

where we used that (1 + y 2 )( 2 _ p)/ 4 ^ (1 + y2)(2 P ~ ) / 4 . Furthermore we have the 
embedding W4'*--*«+* (fi) ^ L~ r^-+7(fi). Since 9~^Po° < q is equivalent to ^_j < 

6 _ 3 p ^ + ( ? , we can interpolate L~^~(fi!) = [L2(n),L~~w+~ ;(n)] (9. This and Korn's 
and Young's inequalities imply 

l([vv]atv,atv)|<natv||2^||vv||9 
q-l 

<C||a tv||2(1-9) | |ftv||2i__||Vv||, 
G-3j»oo+</ 

<C||atv||f-9>||9tVv||2l^_||Vv||, 

^ Ц Ą v l l f - ^ Í J M - I I Ď v l l ^ J ^ Ц V v l l , 

^ Є J ( v ) + CЛ||ðtv||2
Я2 + | | Ď v | | f + i) . 

It is indeed interesting that both terms |([Vv]9*v,9*v)| and HVv^Hg require the 
same bound for q, which is q > | ( 9 - 3poo). Now we have to find the upper bound 
for g, in order to control £2g-P(|E|2),fi(-^vN)- For that we require q -̂  | ( 3 + Poo) and 

obtain 

/ \DvNfi-*W2)dx ^ f |ovw |2 ' -^ dx = llov^H2*:^ ^ C(||Vvw||l + 1), 
JQ JQ, 

since 2q-pQO ^ 3. That means that Q2q-P(\E\*),n(DyN) can be controlled if || V v N | | | 
can be controlled. But for Poo > | we can always find q such that 

9 - 3poo ^ . 3 + poo 
o < ? ^ — " — • 
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Thus all terms in (2.46) can be controlled under this condition. It remains to control 
the terms involving fN in (2.42) and (2.43), which is easily established by 

|<Vf", Vv">| < | |P"f|| l i3 | |Vv" | | 2 < C||f||1>2 | |Vv" | | 2 

<C||f||2,2 + C||/3v% 

\(dtt
N,dtv

N)\ < \\PN(dtt)h\\dtv
Nh < c\\dtth \\dtv

N\\2 

<C||atf||2
2 + C||atv^||2. 

Finally we have, since p(|E|2) ^ p0 ^ 2 ^ q, 

(2-50) ^P(|EP),«(DvN) < \\DvN\\% < C\\DvN\\r 

Hence by Lemma 2.47, Lemma 2.48, Korn's inequality, and the above calculations 

we get, for max(2, ^^f2^) < q <. -ifS2-, 

dt\\dtv
N\\\ + dt(\\Dv(t)\\"q) + dt\\VvN\\\ + X(vN) + ^J(vN) 

< C(l + K f V v ^ v ^ v " ) ! + \(dti
N,dtv

N)\ + 0 p ( m , n ( D v " ) 

+ \(ViN, VvN)\ + \\VvN\\l + e2q-p{lEFhn(DvN)) 

< C(i + II^V"!!™"**-*'2) + \\dtv
N\\rx{R2'2) + ||f||?i2 + ||atf||l). 

The following lemma ensures that for small times V we get boundedness (uniformly 

with respect to IV) of the following expressions, for max(2, 9~|P°°) < q < 3+P°° : 

(2.51) l |a tv
w | |2» ( / , ; L 2 ( f i ) ) , | |Vv"| | 'L O , ( / ( ; L , ( n ) ) , 

| | l ( v N ) | | i H / ' ) ' \\J(VN)\\L^), 

where V = [0,T']. These a priori estimates in turn are sufficient to pass to the 

limit IV -> co to get a solution v of our original problem (2.2). 

Lemma 2.52 (local version of Gronwall's lemma). Let T,a,co > 0 be given 

constants and let 0 < h G C([0,T]), 0 ^ / G Cx([0,T]) satisfy 

(2.53) f(t)^h(t)+cof(t)1+a. 

Then 

f(t) < H(t) + H(t0) ((1 - ac0H(to)a t)~i - l) 

for all c G [0, to), where 

H(t):=f(0)+ [ h(s)ds, 
Jo 

and where t0 is defined by the condition ac0H(to)a t0 = 1. 
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P r o o f . Define a: [0, t0) -> R^° by 

a(t) := H(t0)((l - ac0H(t0)<* * ) " * - l ) . 

Then a solves 
a'(t)=c0(H(t0)+a(t))1+a, 

a(0) = 0. 

Setting z(t) := H(t) + a(£) we see that for all t e [0, t0) holds 

z'(t) = h(«) + a'(*) = h(t) + c0(H(*o) + a(r)) 1 + a 

> h(t) + c0(H(*) + a(*))1+a = fc(*) + c0z(t)^a. 

Since *(0) ^ /(0) we get from this and (2.53) that / '(0) < z'(0). Consequently, there 

exists t' > 0 such that for all t e [0,t'] holds /(£) ^ z(t). Iterating this argument we 

obtain the assertion of the lemma. • 

In order to derive the last estimate from Theorem 2.13 we go once more into (2.36) 
and move the term with the time derivative to the right-hand side. This gives 

Z(v") ^ C{\ + IIVv^Hl + |(Vf", Vv">| + 0p( |E |2) , f i(Dvw) + \(dtv
N, - A v " ) | ) . 

Using 

l|f ||L00(J;lV-'-1(n)) = ll-P -?IIL00(/;W1'2(Q)) ^ C||f||x/oo(/;Vi/i,2(C2)) ^ C, 

together with (2.50), (2.51) and Lemma 2.47, for q > max(2, | ( 9 - 3poo)), we get 

(2.54) l(vN)^C(l + \(dtv
N,-AvN)\). 

The following lemma gives control of the remaining term |(<9tv
N, — Av N ) | . 

Lemma 2.55. For 1 < p ^ ^ 2 there holds 

|(d tv, Av)| ^ C\\dtv\\^=^ J(v)^^)(l(v) + l ) - ( £ ^ . 

P r o o f . With the help of Lemma 2.28 we conclude 

| (d tv,Av) | ^ ||ftv|| 3 ! ^ | | v | | 2 . ^ « 
2 7 ' o o - l ' J ' o o + l 

<o||^v|| ^ ( I W + l ) 1 " -
2i'oo - 1 

< C\\dtv\\\-e\\dtv\\\ 3 ^ ( l ( v ) + l ) 1 / " -

^ c\\dM\\-e{J(y)l*(i(v) + i)2~^)e(i(v) +1)1/*-, 

where we used the interpolation L^^r (Ct) = [L2(SI), L3p°° (fi)]* with 0 = 3
2 ^ 2 > 

1 - 0 = f^jEf • Consequently ^ f 0 + ^ = 2 ( 3 ^ 2 ) • T h i s P r o v e s t h e lemma" D 
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This lemma, (2.54) and (2.51) imply 

1 + ~(VN) ^ C{\ + J{VN)WPZ?2)(T(VN) + 1)2(3^-2)). 

Thus by Young's inequality, which is applicable for Poo > f, we get 

(2.56) l{vN)^C{\ + J{vN)^c), 

which raised to the power 5j^°~6 gives, in view of (2.51), 

l(v
Nf-^^C(l + J(vN))^C. 

This and (2.51) implies that the following expressions are bounded independently 
on At, for max(2, --=§--*•) < q ^ - - a * , 

(2.57) l l f tvA f | | i„ ( / , ; L 2 ( n ) ) , | |Vv"| | 'L O C ( / , ; L , ( n ) ) , 

\\HyN)\\,<£*=*, \\J(yN)\\mn-
L -i-7'oo ( / ' ) 

2.2. Passage to the limit 
From (2.57) and Lemma 2.28 it follows that 

(2.59) iiavn,.,,,^,,,,, + nav"^,,^,, w, .&,m < c 

since (v N , 1) -= 0. Thus we can pick a subsequence (still denoted by vN) with 

(2.60) vN - - v in L P o o ^ ^ ( P ; K V 2 ' ^ ( n ) ) , 

(2.61) dtv
N -»dtv in L 0 0 ( P ; L 2 ( n ) ) n L ^ ( P ; V V 1 ' ^ ^ ( f i ) ) , 

where we have used the fact that the weak limit of distributions on I x 0, is unique. 

Since W2>p{fl) <-><-> Wlf2{Q) for p > f, the lemma of Aubin-Lions implies the 
existence of a subsequence such that 

(2.62) V v N -> V v in L2{I' x fi). 

As a consequence we get convergence of the convective term 

(2.63) [VviV]viV -> [Vv]v in Ll{I' x ft). 
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Observe that we have due to Lemma 2.19 (c) (with B = 0) and p(|E|2) -̂  p0 ^ 2 

(2.64) | |S (Dv" ,E) | | L 2 ( / , x n ) ^ C(E)\\(DvN)^E^-1\\L2{Ilx^ 

<C(l + \\VvN\\L2{I,xn))^C. 

On the other hand by (2.62) D v N -> Dv a.e. in V x ft, so 

(2.65) S (Dv N ,E ) -> S(Dv,E) a.e. in V x ft 

due to the continuity properties of S. Now Vitali's convergence theorem, (2.64) and 

(2.65) imply 

(2.66) S ( D v N , E ) -> S(Dv,E) in Ll(I' x ft). 

Now we can easily pass to the limit in the Galerkin system (2.33). Indeed, choose ur 

and if e Cg°(I'), then we can conclude from (2.33), (2.61), (2.63), and (2.66) that 

/ (D((dtv,cc,r) + (S(Dv,E),Du; r) + ([Vv]v,a; r))di 

= / (D ( ( f , a ; r ) - X
E (E0E ,Du; r ) )d f . 

JT 

Furthermore v fulfills 

l lftv| |L2 ( / ,x n ) + | |S(Dv,E) |Ui ( / , x n ) + I I [ V V ] V | | L | ( / / X Q ) ^ C. 

Since {u; 1 , ^ 2 , . . .} is dense in Ws>2(il) n VPx and WS>2(£1) <--> W1'00^) for s > §, 
we deduce that 

J <p({dtv,u) + (S(Dv,E), Du>) + ([Vv],v,w)) d* 

= I V>((f ,u;)-xE(E(8)E,Dw))dt 

is fulfilled for all u € Ws>2(9) n VPx, especially for all u> e V. Note that 

(dtv,u), (S(Dv,E),Dco), ([Vv]v,u>), <f,w), <E® E , D « ) € LX(I') 

and thus we obtain for all u> € V and a.e. t £ I' 

(2.67) (dtv,v) + (S(Dv,E),Dw) + ([Vv]v,w) = (f,u>) - x B ( E ® E ,Dw). 
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It remains to show that v(0) = v0 . The embedding VV1,2(/') <-> Ci(I') and the 
interpolation L°°(I') = [L2(I'), WX'2(I')]L imply 

1 2 

(2.68) | |P"v o -v(0) | | 2 = |K (0 ) -v (0 ) | | 2 

^ C ||vw - v||J2(//;L2(n)) \\dtv
N - fcv||_a(//._a(n)) -> 0. 

> v ' N v ' 

-+o ^c 

Since P N v 0 -+ v0 in L2(fl) we get v(0) = v0. Overall we have shown by (2.67) 
and (2.68) that v satisfies (2.2) in the weak sense. It remains to prove the estimates 
for v, I (v ) and J(v). First of all, from (2.60) and (2.61) it follows that 

(2-69) llftvlU-^-ro, + Hv|lL!,oote£( /, ;Vy2_ (n ) ) < C. 

The passage to the limit in the expressions ||X(vN)|| HVIX)-G and || J(VN)\\L1(I') is 
L 2- . 'oo ( / ' ) 

possible, since due to (2.62), (2.58), (2.59) and the convexity of X and J in D(Vv) 
and D(<9_v), respectively, we can use De Giorgi's semicontinuity theorem (cf. [23], 
p. 132) and a version of it (cf. [12]) to obtain 

(2.70) / I ( t , v) ^ 5 ^ + J(t, v) dt <: C. 
Jo 

Moreover from this, (2.30) and Young's inequality we get 

rT POO(^POQ-G) pT 5poo—6 

(2.71) / liatv||(3"3—
2)("~-1) dt^C Z(i,v)--*~ + J(t,v)dt^C. 

JO 'I 'oo+l JO 

In order to obtain the estimate for <92v we differentiate (2.67) with respect to time 

in the sense of distributions, which yields for all u> E V and all <p 6 CQ°(I') 

nT' pT' 

(2.72) / (d2v,uj)ydt= / -(a„S(Dv,E),Dcj)(D + (2v(8)atv,Du;)(D 
Jo Jo 

+ (dtf,w)(p - 2xE (E (g> <9*E,Du;)<Dd_. 

From (2.6), (2.7) and P(|E|2) ^ p0 ^ 2 we get 

| |3 tS(Dv,E)| |2 ^ C( l + J(v) + ||Vv|2 + ||Vv||_), 

which due to (2.69) and (2.70) belongs to Ll(V). From (2.69) and the assumptions on 
the data we easily see that also the other three terms on the right-hand side of (2.72) 
belong to Ll(I') if u E L2(I'-V2). This implies d2v e L2(P;(V2)*). From (2.69), 
(2.71) and the parabolic embedding (cf. [14]) we finally get v G C(V\Vr), 1 ^ r < 

6(poo — 1). This finishes the proof of Theorem 2.13. 
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3. T IME DISCRETIZATION 

Now we discuss a time discretization of the system (2.2) under the additional 
assumption that 

p = const. 

and consequently we have to modify our basic assumptions on S. We assume that 
the following monotonicity condition 

(3.1) d-M±*±BijBkl > 7 l ( l + |E | 2 )d + | D | 2 ) ^ | B | 2 , 
OUkl 

is satisfied for all B , D G X := {D G R ^ , t r D = 0}, and that the following growth 
conditions are satisfied for z, j , k, /, n = 1,2,3, 

(3 2) | ^ g ; E ) [ < -* ( -+i -w+I D I 2 )^ ' 

(33) | a 5 a S ' E ) l * 73|E|(1 + |E|2)(1 + |D|2)E?i-
For the numerical analysis we need some additional notation. Let Ik = { £ m } m = 0 be 
a given net in an interval / = [0, tM] w-th a constant time-step size k := £m — tm-i. 
We denote by d t v

m := k_1(vm - v m _ 1 ) the divided difference in time. By lq{Ik',X) 
/ M \i/p 

we denote the space of functions {<£m}m=o with finite norm (k Yl ll(^m|lx ) • ^or 
^ m=0 ' 

q = oo, functions {(Dm}m
f_0 need to satisfy the bound max ||</?m||x < oo. 

O^m^M 

The problem (2.2) is approximated by a time discretization by means of the implicit 

Euler scheme: 

Algorithm 3.4. Let there be given a time-step size k > 0 and the corresponding 
net h = {£m}m=o- F°r m^\ and v m _ 1 given from the previous step, compute an 
iterate v m that solves 

(3.5) d t v
m - div S(Dv m , E(*m)) + [Vvm]vm + V7rm 

= f(tm) + / [ V E ( < m ) ] E ( t m ) , 

d i w m = 0, 

v° = v0, 

endowed with space-periodic boundary conditions (2.6). 

The main result of this section is: 
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T h e o r e m 3.6. Assume that the extra stress tensor S satisfies (3.1)-(3.3) and 

S(0,E) = 0. Let v 0 G M72'2(ft) n Vp be a given initial velocity, f G C(I; W^2(Q)), 

dtf G C(L,L2(Q)) be a given force, E G C ^ J j C 1 ^ ) ) be a given eiecfcric fieid. Let 

v be a strong solution of the problem (2.2) on the interval I' = [0, V] for p G [|, 2] 

satisfying (2.14) and (2.15). Suppose that vm is a weak solution of the problem (3.5) 

satisfying (3.19) and tM ^ T'. Then for aii 

(3.7) a < a 0 ( P ) : = 5 p " 6 

4(p- l ) 

there exists a constant C that only depends on vo, f, Q, T' and a but not on the 

time-step size k, such that the following error estimate is valid, provided that the 

time-step size is chosen sufficiently small, i.e. k ^ ko(p,T'), 

M 

(3.8) mаx | |v(ím) - v m |Ц + k ] Г | |D(v(ťm) - vm)\\l ź Ck2а. 
l<m<M *—^á ľ 

m = l 

R e m a r k 3.9. With a more refined technique (cf. [13]) one can show that the 
assertion of the theorem holds for p G ( 1 1 + ( /

2 1 ,2] « (1.5583,2]. 

Before we start with the proof of Theorem 3.6 we need some additional properties 
of quantities related to S. Due to (3.1)-(3.3) we get that l(t, v) and J(t,v) defined 
in (2.9) and (2.10) satisfy the analogue of (2.22) and (2.23), i.e. 

l(t,v) ^71 f(Dv(t)y-2\B(Wv)(t)\\2dx, 
Jn 

J(t,v) > 7i f(Dv(t)y-2\B(dtv)(t)\2dx. 
Jn 

The discrete analogue for J(v) for a function defined on a net h reads as follows 

<c(v");= / f as»w™ + <•;-')v-).-<«.)) AsDlAi^)Du{d,^)ix, 
Jn Jo dJJki 

which due to (3A) and Lemma 2.17 satisfies 

(3.10) K(vm) ^ C 3 / (1 + | D v m | 2 + I D v 7 7 1 " 1 ! 2 ) 1 ^ ^ ^ ^ 7 " ) ! 2 dx. 
Jn 
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Lemma 3.11. Let S satisfy (3.1) and (3.2). Then for all (sufficiently smooth) v 
with fQ v dx = 0, for all 1 ̂  q < oo, and almost every t E I there holds; 

(3.12) ||Vv(*)||2____ + ||r>(VV)(t)ll____ ^ C2(j,v)||ov(t)||2-P, 
6-3p+q 2-p+q 

(3.13) | |d tv(*)||2___ + | |D(ftv)(*)||___. < CJ(t,v)\\Dv(t)\\\^. 
6 - 3 p + q 2-p+q 

P r o o f . Lemma 2.25 (r i-+ 2-\ ) a n ( * -° = const, imply 

| |D(Vv)| | a. ^ CI(v)i||(/3v)^|U 
2-p+q 2-p 

4Cl(v)i\\Dv\\^, 

which together with the embedding VV2'--i'+? (Q.) <-> VV1,(5-3r+^ (fi) proves the first 
assertion. The second assertion follows analogously. • 

Since K(vm) is the discrete version of J(v) we immediately obtain in the same 
way as in Lemma 3.11 and Lemma 2.28: 

Lemma 3.14. Let S satisfy (3.1) and (3.2). For all (sufficiently smooth) v m 

with fQ v m dx = 0 there holds for all q G [1, oo): 

,-112 _ I I T . ( _ t V
T O ) | | _ 

2 -

^ C/ctv-XHovi, + llĎv™-1!!,)2-*, 

Jt-Tí 

(3.17) < C(l + l(vm) + l í v " 1 - 1 ) + /C(vm)). 

(3.15) ||dřv
m||_____ + | |0(cř t V-)| |_____ 

6-3p+q 2-p+q 

n " m ' l g t n-vv | | g ; 

(3.16) | |díV m | |L + | | * V v m | | _ _ ^ C(l + X ( v m ) + Z ( v m - 1 ) ) ^ / C ( v m ) * / 2 , 

The following lemma ensures the solvability of the problem (3.5). 

Lemma 3.18. Let S, v0, f and E satisfy the assumptions of Theorem 3.6. Then 
there exists a weak solution v m of (3.5) satisfying 

(3.19) max ||vто||. + k _Г ||Dv™||£ ^ C(f,v0)E), 
l<m<M "-—-* ľ 

M 

£ 
7 7 1 = 1 

whenever p > §. 
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P r o o f . First of all note that the strategy employed in the proof of Theorem 2.13 
to ensure the existence of strong solutions is not applicable in the discrete case, 
since there is no discrete version of the local Gronwall's inequality. For p > | the 
estimate (3.19) is sufficient to ensure the existence of weak solutions using the theory 
of monotone operators (cf. [29]). For this we must view (3.5), with k and m fixed, as 
a steady system with the discrete time derivative as the right-hand side. In order to 
prove the lemma for p > | we proceed as follows (cf. [22], [41]). We approximate (3.5) 
by the mollified system 

(3.20) dtvm - d ivS(Dv m E(* m ) ) + [Vvm ] (vm ) 1 / n + VTT™ 

= fn(tm) + / [ V E n ( t m ) ] E n ( i m ) , 

divv™---0, 

where (vn)i/n = Wi/n * v m is the usual mollification. Now we fix m and k and 
move the discrete time derivative to the right-hand side and view (3.20) as a steady 
system. Using the Galerkin method and the theory of monotone operators9 it is easy 
to show that there exists a weak solution to (3.20) satisfying the estimate (3.19). 
The key observation is that 

[Vvm ] (vm ) 1 / n is bounded in L&(Sl) 

uniformly with respect to n. To take advantage of this property we must use L°°-test 
functions which ensure the almost everywhere convergence of D v m . This argument 
is elaborated in detail in [41] and one can follow exactly the argumentation there. 
As a result one obtains that D v m converges a.e. in Q to D v m , which together with 
Vitali's convergence theorem enables the limiting process in the weak formulation 
of (3.20). • 

In order to verify Theorem 3.6 we have to deal with two problems. Namely that 
the discrete solution v m of the problem (3.5) is only weak and secondly that the 
information about dfv is also weak. Thus we introduce an auxiliary problem to 
split these problems subsequently. We follow the procedure introduced in [37] and 
consider the following auxiliary problem: 

Algorithm 3.21. Suppose that v is a strong solution to the problem 2.2 with 

the properties stated in Theorem 2.13. Then determine V m , m = 1 , . . . ,M, that 

9 Note that the mollified convective term maps the space Vv into W l'p(Q.) for p > §. 

598 



solves 

(3.22) dtV
m - d ivS(DVm ,E(tm)) + [ W m ] v ( t m ) + V n m 

= f(<m) + XB[VE(tm)]E(tm), 

d ivV m = 0, 

V° = vo, 

endowed with space-periodic boundary conditions (2.12). 

We have linearized the convective term with respect to the continuous solu­
tion v(£m), for which we have good regularity properties. The hope is that V m 

inherits the regularity from v . In fact this is the case at the expense of restricting 
ourselves to a smaller range of p's. 

Proposition 3.23. Let S. v0. f and E satisfy the assumptions of Theorem 3.6. 
Let v defined on I = [0, T'] be the strong solution ensured by this theorem and let 
tM < T'. Then there exists a strong solution V m of the problem (3.22) whenever 
p G [|, 2]. This solution satisfies 

M 

(3.24) max | |4Vm | |* + k £ (Z(Vm)*-i? + /c(V™)) ^ C(f, v 0 ,E) . 
m = l 

In particular we have that for all 1 < r < 6(p - 1) it holds 

(3.25) V - G Z p ^ ( 4 ; W2^(n)) n l°°(Ik; F r), 

dtym e i^Xv-D faw^M) n l°°(Ik;L
2(n)). 

P r o o f . The existence of a strong solution V m of (3.22) follows from the regular­
ity in (3.25) using the Galerkin approach with eigenfunctions of the Stokes operator as 
a basis. The regularity (3.25) follows in the same way as in the proof of Theorem 2.13 
from (3.24) using also Lemma 3.14. Thus we shall only derive these estimates. For 
all missing details in the following computations we refer to [30, Section 5.3]. 

First of all we test the weak formulation of (3.22), which reads for all ip G Vp 

(3.26) (dtV
m, <p) + <S(DV"\ E ( U ) , D¥>> + <[W m ]v ( i m ) , <p) 

= (f(tm), tp) - xE{E(tm) ® E(*m), Dip), 

with V m and sum up over all iteration steps to obtain the first a priori estimate 

M 

(3.27) max | |Vm | | i + k £ ||DVm | |£ ^ C, 
m = l 

where we used that ([VVm]v(tm), V m ) = 0. 
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The next step is to use in (3.26) - A V m as a test function. Again we use that 

div v(tm) = 0 in the linearized convective term, the properties of S (cf. (3.1)-(3.3)), 

the definition of J ( V m ) and obtain, after summation up to level N € { 1 , . . . , M}, 

/V 

(3.28) | |VVw | |2 + fc_Tj(Vm) 
T U = 1 

^cfl + kT /|Vv(tm)||VVm|2dx 
V m=i j " 

+ " t /„r5 , , ( D i;:E"" ) ) v g- • c«<vvm»i * ) • 
The last term on the right-hand side can be bounded by (cf. (3.3)) 

At At 

(3.29) ek £ £(V m ) + Ck ] £ | p V m | | £ , 
m=l m=l 

where the first term is absorbed in the left-hand side of (3.28). The second term on 

the right-hand side in (3.28) can, for 1 < r < 6(p - 1), a G (0,1), be estimated by 

(3.30) | |Vv(tm) | | r | | W m | | 2
r , < C||Wm||2r, = C||Wm||^+1-a), 

where r' is the dual exponent to r and where we used v E C(I; Vr). Now, for p > | 

and gl^-r < r < 6(p- 1) we interpolate L2r>"(ft) both between L2(Q) and L3p(U) and 

between Lp(ft) and L3p(ft), which gives 

r(3;>-2)-3i> 3j> 

(3.31) | |W m | | 2 r < < | | W m | | 2 "(3"-2) | |VVm | | , ( 3"-2 ) 

||VVm||2r> ^ ||VVTO||* r | | V V m " ł 

2 II v v IIЗp 

í Г ( З p _ 2 ) - 3 p з -.(2-,0+p 
4 т-

Зp 

Using also (2.29) the right-hand side of (3.30) can be estimated by 

(3.32) C(l + | | V V m | | 2 ) ^ | | V V m | | p Q 2 ( l - f X ( V m ) ) Q 3 , 

where 

_ A r ( 3 p - 2 ) - 3 p 1 r ( 3 p - 2 ) - 3 p 
Q l = ( 1 " a ) r ( 3 p - 2 ) ' Q 2 = "•* r ' 

n n ^ 3p 3 r ( 2 - p ) + p 
Q 3 = ( 1 - a ) ; r T 3 p ^ 2 ) + a ^ r • 
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(r) 

Young's inequality together with the requirements 

for any prescribed e > 0 yields 

N , N p 

i + ii wNwi+k J2 x(yrn) ^ c ( i + f c _C II v v m i i p + c (! + iivv^ni)^ 
m = l ^ m = l 

where 

^ ^ ^ t " - 1 ^ iore\0,rS6(P-l). 

In view of (3.27) we have to check whether A < 1, which holds for p e (11+g/^T,2]. 
Therefore we can employ discrete Gronwall's lemma and obtain our second a priori 
estimate 

м 
(3,33) max ||VVm||2 + k £ l(Vm) < C. 

m = l 

Now we want to use "e^Vm" as a test function in (3.26). This in fact will give us 
the lower bound p ^ | . Firstly, we have to introduce V - 1 . For that we set for all 

1 ( V ° - V- 1 , ^ ) + <S(DV°,E(0)),Dy>) + <[W°]VV> 

= (f(0),v)-XE(E(0)®E(0),D¥J). 

Using V° = vo, p ^ 2 and the assumption on vo and E we obtain 

(3.34) ||_ tV°||| < C(||f(0)||l + ||[Vv0]v0||i + ||divS(Dvo,E(0))||I 

+ | |E(0)®DE(0) | | l )<a 

Now we can take the discrete time derivative of the weak formulation (3.26), use 
dtV

m as a test function, and sum up to level N G {1 , . . . , M}, to obtain 

(3.35) \\dtV
N\\l 
N 

+ l Ž / (S(DV"\E(ím)) - S(DVm-1,E(tm-i)))D(Vm - V^dx 
k m=i Ja 

šc(l + kJ2\[ [Wm]dtv(ťm-i) • dtV
m dx\), 

601 



where we used (3.34). From the formula dt\(tm) = k x ft"
1 dtv(s)ds and (2.15)2 

we deduce 

(3.36) l|dtv(*m)||2 ^ esssup||d,v||2 ^ C, 

and thus we can bound the last term in (3.35) by 

(3.37) H d ^ - O H a || |Vv m | \dtV™\ ||2 ^ C| |VVm | |4 R V m | | 4 

^e/C(Vm) + CX(Vm), 

where we used (3.15), (3.12) with q = 2, (3.33) and Young's inequality. However we 

have to check whether 
1 2 ^ A ^ 5 

8 - 3 p " ^ 3 ' 

which is the lower bound from the proposition. Furthermore we have for the second 
term on the left-hand side of (3.35) 

AT1 / ( S ( D V m , E ( * m ) ) - S(DVm - 1 ,E(^m_ 1 ) ) ) -D(V m - Vm-X)6x 
JQ 

= k'1 / ( S ( D V m , E ( * m ) ) - S(DVm - 1 ,E(^m ) ) ) • D(V m - \m"1)dx 
JQ 

+ ft"1 / (S (DV m " \E (* m ) ) - S(DV m " 1 ,E(r m _ 1 ) ) ) • D(V m - V " " 1 ) dx 
JQ 

= fcK(Vm) 

+k if (̂nv-,0 -rm>,)^g) w w , , w n J , , 
Jf2 Jo O&n 

The last term is moved to the right-hand side and there estimated by 

(3.38) ek/C(Vm) + Ck( | |£Vm | |£ + H l T v ^ - i p , 

where we used (3.3) and (3.10). Note that the last term is finite after summation 

over m, due to (3.27). Altogether, we have therefore derived our third a priori 

estimate 

M 

(3.39) max \\dtV
m\\2

2 + k У >CÇVm) < C. 
m = l 
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Using - A V m as a test function in (3.26), where also the term with the discrete time 

derivative is estimated, yields for p > § and 5 ^ < r < 6(p - 1) (cf. (3.28)-(3.30)) 

(3.40) 1 + I ( V m ) < C(l + e I (V m ) + \\DVm\\p
p + | | W m | | i , 

+ | | e ! t V
m | | ^ U | V 2 V m | | ^ ) 

" 2 p - l p + 1 ' 

^ C(i + Ce||w
m||2 + £ j ( v m ) ( i + | | /3v m | | 2 - p ) 

+ | |d tV
m | | , , | | V 2 V m | | ^ ) 

2p-l p+1 

^ C(C£ + s ! ( V m ) + | |AVm | | 3 p i ( l + I ( V m ) ) 1 ^ ) , 

where we used V m G l°°(h', W1,2ft) and p < 2; the interpolation of L2r '(ft) between 
L2(Q.) and L8~3-'(Q), which is possible for p > §, and (3.12) with g = 2; again 
V m G /°°(IA:; W^2(fl)) and finally (2.29). For e sufficiently small we can absorb the 
term cel('VTn) into the left-hand side of (3.40). Thus we get 

(3.41) (1 + 1 ^ ) ) ^ < C ( l + | |d*Vm | |_3^). 
x 2p-l ' 

Now we interpolate L ^ ( f i ) between L2(ft) and L3p(fi), and use that dtV
m G 

l°°(Ik;L
2(Ct)) and (3.16), to arrive at 

(3.42) (1 + I ( V m ) ) I ^ i < C(l + K(Vm)A/2(l + I ( V m ) + I ( V m ~ 1 ) ) A T ? ) , 

with A = j£j_%- We raise this inequality to the power 7 and apply Young's inequality 
to get 

(3.43) (l+l(Vm)y*ir 

^ C(l + /C(Vm)7^(l + I ( V m ) + I ( V m " 1 ) ) ' > A ^ ) 

^ C ( l + CeK(Vm)+e(l+I(Vm)+I(Vm-1))-^A^i). 

We now require 7 ^ - = ^ x A ^ > which gives 7 - -£-*2=±m With this 7 and 
e sufficiently small we can absorb the last term in (3.43) into the left-hand side after 
summation over all time steps. Thus we have derived 

M _ / M \ 

(3.44) k^I(Vm)^r ^ C M + k ^ / C ( V m ) J *SC. 
m=0 ^ m-r.0 / 

The proof is complete. • 
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Proposition 3.23 shows that the solution V m of (3.22) has the same regularity 
properties as the solution v of the problem (2.2). Thus we can split the error into 
two parts, namely 

(3.45) v(tm) - v m = (v(tm) - V m ) + (Vm - v m ) =: rf1 + e m 

Before we discuss these errors we need one more property of S. 

Lemma 3.46. Let S satisfy (3.1) and (3.2). Then for all (sufficiently smooth) v, 
w, for all 1 ^ r < oo, and almost every t G V there holds 

| |D(v(t) - w(t)) | |2_^_ < C(S(Dv(*),E(t)) - S(Dw(*),E(0) ,D(v(0 - w(t))> 

x ( l + | |Dv(t)| | r + | |D(v( t ) -w( t ) ) | | r )
2 - t ' . 

P r o o f . We have using Lemma 2.19 

||D(v - w) | | 3 l+ : = f ((1 + |Dv| + |D(v - w)|)P-2 |D(v - w)|2)5=F+^ 

x (l + |Dv| + | D ( v - w ) | ) £ F & d a ; 

^ ( f (S(Dv,E) - S(Dw,E)) • D(v - w) dx) "+ ' 

x (J (1 + |Dv| + |D(v - w)|Y dxj'"+', 

which immediately gives the assertion. • 

Let us first discuss the error 77 m , where we can take advantage of the regularity 
properties for v and V m . The error rj™ is governed by the following system, which 
holds for all (p G Vp, 

(3.47) (dt<nm,<p) + (S(Dv(tm) ,E(tm)) - S(DVm,E(*m)),Dy>> 

+ ([VV
m]v(tm),<p) = (R™,<p), 

supplemented with 

1 fu" 
(3.48) R m := dtv(tm) - dtv(tm) = - - / (s - tm^)di2

tv(s) ds. 
* J-m-1 

From (3.48) and (2.15) we compute that 

(3.49) l | R m H 2 ^ sup \\dtv(s)\\l 
se[tin-i,tin] 

rtin 

(3.50) l|RmH2v2,. ^ Ck / ||a2v(S)||2V2). da. 
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If we use 77™ as a test function in (3.47) and sum over all iteration steps, we obtain, 

for 1 <r < 6(p- 1), 

м 
(3.51) max \\V

mg + k^ (II W l 2 _ ^ + IID^II2,) 
1-^m^M --—-* 2-p+i- r 

m = l 

M 

^C(r)kJ2(^m^m), 
m=l 

where we have used Lemma 3.46 and v(£ m ) ,V m G l°°(Ik',Vr). We can bound 
1 2r 

the term on the right-hand side with the help of the embedding W ,2-i>+r(fL) <-» 

W ^ ^ ^ ^ ) and the interpolation of KV^-^> 2 ( f i ) between W^2(9) and L2(ft) 

as follows 

(3.52) ( R m , 7 , m ) < | | R m | | ^ - | | R m | | ( v ^ l l ^ l k 
v *' 2-J.+V 

< C(f,vo)\\Rn\\2^ + i l l D t i ™ ! ! ^ , 

where we also used Korn's and Young's inequalities and (3.49). Now, we move the 

last term in (3.52) to the left-hand side of (3.51) and it remains to bound the first 

term in (3.52). Note that 

(3.53) 2 r - 6 + 3p = ; a ( p > r ) ^ ^ j ; = ^ ^ , for r / 6 ( p - l ) . 

Prom (3.50) and (2.15)3 we derive 

M , M - t m v a(p,r) 

* £ IHHffi)P-'r) ^ C*»^) J ] / ||9t
2v(S)||

2
V2). ds 

m = l \ n = l Jt™-1 ' 

^ C A ; 2d(p , r )^ 

which together with (3.51), (3.52) yields 

M 

(3.54) max ||ini2 + k £ ||D7,m||2 ^ C(r)*2a<">, 
l ^ m ^ M -—--/ ^ 

m = l 

with a(p,r) defined in (3.53). 

We still have to deal with the error em , which is governed by the system 

(3.55) (d te
m,v?> + (S(DV m ,E(« m ) ) -S(Dv m ,E( ( m ) ) ,D ¥ >> = (vm,<p), 
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which holds for all y? G Vp, and where 

(3.56) - r m = [Wm]v(tT O) - [Vvm]vm 

= [Wm]77m + [ W m ] e m + [Vem]vm . 

If we use in (3.55) the test function e m and sum over all iteration steps, we get 

M IIDemll2 

(3.57) max | |em | |2 + A;y" i^— 
^ m < M m=\ C + HDem | |2-p 

M r M . 
<,CkJ2 |T? m | | e m | |W m | da ; + CA;y" / | e m | 2 | W m | d z 

m = l •!«• m = i •!" 
M 

=:Cfc£(/m+Jm). 
m = l 

For the lower bound of the elliptic term we used Lemma 3.46 with r = p and the 
uniform bound for V V m G l°°(Ik; LP(Q)). With the help of Holder's inequality, the 
interpolation inequality 

IMI2H < IMl5-A||Vv||* 

with A = r (5^_6) and W m € l°°(Ik;L
r(il)), - | § - < r < 6(p - 1), we find that the 

term 7 m is bounded by 

(3.58) | |VV m | | r | | e
m | | 2 r , | | r r i |2 , ' 

IIDemllA 

< C||T?m||J-A||VT|m||i | | e m | | ^ A - -£ -(C + | |Dem |P-P)V2 
11/ 112 II / lip II 112 ( C + | | D e m | | 2 - P ) A j 2 V " "p ' 

x -IIDemll 
^ c||em||2 ||T,m||2(C + I I D e l 2 - " ) ^ + ( c +

2 ^ e m | | 2 ! P ) 1 / 2 l | D T ?
m | | p 

m„2 ' h\\»emWl š C\\r,m\\l + C(l + ||Dem||P)FTT-xT||em||2 + C\\BV
m\\l + p C + | | D e m | | 2 - p ' 

The last term on the right-hand side is absorbed into the left-hand side of (3.57). 
For the first term and the third term in the last line of (3.58) we use estimate (3.54). 
The term Jm is easier. We get 

||-r-)em||2A 

(3.59) | | V V m | | r | | e
m | | 2

r ^ C | | e m | | 2 ( 1 - A ) " ^ (C + l |Dem | |2-p)A 

(G + ||JJe ||p ) 

( 2 - ? , )A 0 i | |Dem | |2 

^ C(l + | |Dem | |p) wr=ry | |em | |2 + " ^ 
2 C + | |De™|| 2Гp ' 
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Thus we arrive at 

м ЦDe" 
(3.60) max | |e m | |2 + k V ^ — 

i<m<Mn " 2 ^ r /

1 C + | | D e " l | | 2 _ p 

M 
< C A . 2 a ( P , r ) + f c ^ ( C + | | D e m | | p ) ^ ^ x | | e m | | 2 

m = l 

and we can use the discrete GronwalPs lemma whenever ^^y-zx < I, where A = 

r(5P-6) > 1 < r < 6(p— 1). One easily computes that this requirement is equivalent to 

p > 11\Q • After the application of the discrete GronwalPs lemma we obtain that 

the left-hand side of (3.60) is bounded by Ck25l^r\ with a(p,r) given by (3.53). We 

can always choose r such that 2d(p, r) > 1 and we readily obtain that 

max | | D e m | | 2 ^ C 
l ^ m ^ M r 

and in turn we derive 

м 
ІP,r) (3.61) max \\em\\l + k £ l|Dem | |2 < C(r)k& 

l ^ m ^ M --—•* 
m = l 

Since the same estimates hold for rf1 we have furnished the proof of Theorem 3.6. 
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MODELING, MATHEMATICAL AND NUMERICAL ANALYSIS

OF ELECTRORHEOLOGICAL FLUIDS*
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Abstract. Many electrorheological fluids are suspensions consisting of solid particles and
a carrier oil. If such a suspension is exposed to a strong electric field the effective viscosity
increases dramatically. In this paper we first derive a model which captures this behaviour.
For the resulting system of equations we then prove local in time existence of strong solutions
for large data. For these solutions we finally derive error estimates for a fully implicit time-
discretization.

Keywords: Maxwell’s equations, electrorheological fluids, constitutive relations, Galerkin
approximation

MSC 2000 : 35Q35, 76W05, 65M60, 65M15

0. Introduction

Many electrorheological fluids (abbreviated: ERFs) are suspensions consisting
of particles and a carrier oil. These suspensions change their material properties

dramatically if they are exposed to an electric field. The observed increase of the
measured shear stresses (or the measured viscosity) is essentially due to the exis-

tence of particle structures forming in the presence of an electric field hindering
the flow and resulting in a higher, apparent viscosity. For an overview especially

of microscopic models and explanations in electrorheology we refer the reader to
Parthasarathy/Klingenberg [36].
In the first section we develop a model which captures the above described fea-

tures. There are many ways to model ERFs and we refer the reader to the discussion
in [39], [43], [19]. Here we model the ERF in a homogenized sense within the frame-

work of continuum mechanics and follow the procedure from Rajagopal/Růžička [39],
(cf. [44], [19]). In particular we take into account the complex interaction of the

*This work has been partially supported by the DFG research unit “Nonlinear Partial
Differential Equations: Theoretical and Numerical Analysis”.
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electro-magnetic fields and the moving liquid, thus treating the electric field as a

variable that is determined by Maxwell’s equations. The final system describing the
motion of ERFs is derived from the general balance laws of thermodynamics and
electrodynamics by a non-dimensionalization and a subsequent approximation.

In the second section we show the existence of strong solutions for the mechanical
part of the system describing the flow of ERFs, i.e. the balance of mass and momen-

tum. The constitutive relation for the extra stress tensor implies that the system
possesses p-structure, where however p = p(|E|2) is a material function and not a
constant. Thus the natural functional setting are generalized Lebesgue and Sobolev
spaces. The basic properties of these spaces can be found in Kováčik/Rákosník [28]

(cf. Diening [10], [11], Diening/Růžička [15], [16], [17] for more recent results and the
web-page [40] for up-to-date information). The method presented here is based on

ideas developed in [31], [32], [6], [30], [33] (cf. [21], [13] for an overview of recent re-
sults for generalized Newtonian fluids) to handle situations when the elliptic operator

is monotone, but due to the properties of the convective term the theory of monotone
operators is not applicable. Our presentation follows the treatment in Diening [12],

Diening/Růžička [14].

In the third section we prove error estimates for the difference between a strong

solution of the continuous system and a weak solution of the fully implicit time-
discretization of this system under the additional assumption that p = const. In
contrast to the mathematical analysis there are only few numerical results for such

a system (cf. [5], [4], [37], [13]). Here we generalize the treatment of Diening/Prohl/
Růžička [13] to the case that the extra stress tensor is not derived from a potential.

1. Modeling

We start by stating Maxwell’s equations. Here we use the so-called “statistical for-
mulation”, which is based on a “dipole-current-loop”model (cf. Eringen/Maugin [20],

Hutter/van de Ven [27], Grot [25], Pao [35]):

curlE = − ∂B
∂t
,(1.1)

curlH =
∂De

∂t
+ J,(1.2)

div De = qe,(1.3)

div B = 0,(1.4)

where E is the electric field, B themagnetic flux density,H is themagnetic field given
by H = µ0

−1B −M with the magnetization M, De is the dielectric displacement
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given by De = P+ε0E with the electric polarization P, J the current density, qe the

density of the free electric charges and ε0 and µ0 denote the dielectric constant and
the permeability in vacuo, respectively.
Now we state the thermo-mechanical balance laws. The balance of mass and

momentum are1

%̇+ % div v = 0,(1.5)

%v̇ − div T = f + f e,(1.6)

respectively, where % is the mass density, T the Cauchy stress tensor 2, f the me-
chanical force density and f e is the electro-magnetic force density which is given by
(cf. pages 284–285 of [35])3

(1.7) fe = qeE + [J + Ṗ− [∇v]P + (div v)P] ×B + [∇B]>M + [∇E ]P

where E is the effective electric field strength defined as

(1.8) E = E + v ×B,

J the conductive current density given by

(1.9) J = J− qev

andM the effective magnetization defined through

(1.10) M = M + v ×P.

The balance of angular momentum takes the form

(1.11) x× %v̇ − div(x×T) = x× f + le,

in which le denotes the electro-magnetic torque density (cf. p. 284–285 of [35]) given
by

(1.12) le = x× fe + P× E + M×B.

1 The material time derivative is denoted by a superposed dot or by d/dt.
2T is introduced via t = T · n, where t is the Cauchy stress vector and n the outer unit
normal vector.

3Here and in the following we use the notation [∇v]w = � wj∂vi/∂xj � i=1,2,3, where
the summation convention over repeated indices is used. We will use that convention
throughout this paper.
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The balance of total energy takes the form

(1.13) %
d
dt

(
e+

1
2
v · v

)
= div(T>v − q) + (f + f e) · v + w + we,

where e denotes the specific internal energy, q the heat flux, w the mechanical energy
production density and we the electro-magnetic energy supply density which is given

as (cf. p. 284–285 of [35])

(1.14) we = J · E + E · Ṗ−M · Ḃ + E ·P div v.

Using (1.6) together with (1.14), we obtain from (1.13) the balance of internal energy
according to

(1.15) %ė+ div q = T · L + J · E + E · Ṗ−M · Ḃ + P · E div v + w,

where L = ∇v is the velocity gradient. We interpret the second law of thermody-
namics in the form of the Clausius-Duhem inequality

(1.16) %η̇ + div
q
θ
− w

θ
> 0,

where η is the specific entropy and θ the absolute temperature.

The system (1.1)–(1.4), (1.5), (1.6), (1.15) and (1.16) which describes the motion
of the liquid has far more unknowns than equations. It is rendered determinate

by providing appropriate constitutive relations reflecting the material properties.
Towards this end, we will assume that

(1.17) %, θ, ∇θ, v, D, E, B,

where D = 1
2 (L + L>) is the symmetric velocity gradient, are the independent vari-

ables and thus we provide constitutive relations for

(1.18) e, η, T, q, P, M,J

of the form

(1.19) f = f̂(%, θ,∇θ,v,D,E,B),

where f stands for any of the quantities in (1.18).
Both the material and the balance equations are subject to invariance require-

ments. It is well known that the mechanical balance laws (1.5), (1.6) and (1.15) are
form-invariant under Galilean transformations given by

(1.20) x∗ = Qx + v0t+ b0, t∗ = t,
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where v0, b0 are constant vectors and Q is a time independent orthogonal tensor,
while Maxwell’s equations (1.1)–(1.4) are form-invariant under Lorentz transforma-
tions. We are interested in non-relativistic effects and it is well-known that there
are problems with consistent invariance requirements for all thermo-mechanical and

electro-magnetic balance laws and constitutive equations in a non-relativistic situ-
ation (cf. [25], [38], [44]). To avoid these difficulties we shall make the following

invariance requirements : We assume that the quantities (1.18), describing the ma-
terial properties, are invariant under Galilean transformations (1.20)4. Moreover we

require that all balance laws (1.5), (1.6), (1.15), (1.16) and (1.1)–(1.4) are form-
invariant under Galilean transformations (1.20). These two requirements imply con-

sistent transformation formulæ for all necessary quantities (cf. [44]). In particular,
we obtain from the invariance requirements that the constitutive relations (1.19)

are isotropic functions of their arguments and that (1.19) has to be replaced by
(cf. Grot [25])

(1.21) f = f̂(%, θ,∇θ,D,E ,B),

where f stands for any of the quantities in (1.18).

In addition to restrictions placed on the constitutive response functions by the
invariance requirements we have additional strictures due to the requirement of the

second law of thermodynamics. We shall now determine the restrictions imposed by
requiring that all admissible processes of the body, i.e. processes compatible with

the balance laws and the constitutive response functions, meet the Clausius-Duhem
inequality (1.16). Introducing the specific Helmholtz free energy ψ through

(1.22) ψ = e− ηθ − 1
%

E ·P,

and substituting it into (1.16) we obtain, with the help of the energy balance (1.15)

and the balance of mass (1.5), the dissipation inequality

(1.23) −%(ψ̇ + η θ̇) + T · L− q · ∇θ
θ

− Ė ·P−M · Ḃ + J · E > 0.

4Note that one usually assumes that the constitutive relations depend on L instead of D,
and then one deduces from the principle of material frame indifference, i.e. (1.20)1 is
replaced by x∗ = Q(t)x+ c(t), that the dependence on L has to reduce to a dependence
on D only. In fact, this is the only relevant consequence of the stronger requirement of
material frame indifference for us which cannot be obtained from the requirement that
the material properties are invariant under Galilean transformations (1.20) only.
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From (1.21) and (1.22) we get that ψ = ψ(%, θ,∇θ,D,E ,B). If we now compute ψ̇
explicitely we can re-write (1.23), also using (1.5), as

−%
(∂ψ
∂θ

+ η
)
θ̇ − %

∂ψ

∂D
· Ḋ−

(
M + %

∂ψ

∂B

)
· Ḃ +

(
T + %2 ∂ψ

∂%
I
)
·D(1.24)

+ T ·W − %
∂ψ

∂∇θ (∇θ). − q · ∇θ
θ

−
(
%
∂ψ

∂E + P
)
· Ė + J · E > 0.

Using the linearity of (1.24) with respect to the dotted quantities andW and their

independence on the arguments appearing in the constitutive relations (1.21) one
easily deduces (cf. Coleman, Noll [9], Truesdell/Noll [45], Grot [25])

η = −∂ψ
∂θ
,

∂ψ

∂∇θ = 0,
∂ψ

∂D
= 0,(1.25)

P = −% ∂ψ
∂E , M = −% ∂ψ

∂B
, T> = T,

and the reduced dissipation inequality

(1.26)
(
T + %2 ∂ψ

∂%
I
)
·D− q · ∇θ

θ
+ J · E > 0,

where ψ, η, P andM are functions of %, θ, E and B only.

1.1. Electrorheological approximation
The equations derived in the last section may be simplified in view of electrorheo-

logical applications. Towards this end it is recommendable to carry out an appropri-
ate non-dimensionalization with a subsequent approximation. All assumptions made

in this section are based upon our understanding of the behaviour of ERFs, both
from the theoretical and experimental point of view (cf. [7], [8], [18], [44], [46]).

Firstly, we shall assume that the Cauchy stress tensor T does not depend on the
electric flux density B, i.e.

(1.27) T = T̂(%, θ,∇θ,D,E).

This assumption reflects the observation that the material properties of an ERF do

not change if a magnetic field is applied, because surely the particles in an ERF bear
no magnetic properties.

Secondly, we shall assume that we are dealing with a dielectricum, i.e.

(1.28) M ≡ 0 where M = M + v ×P.

Note that this assumption ensures that an apparent magnetization can only be gen-
erated by a moving polarized fluid (cf. [25]). This common assumption is a crucial
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point for deriving the so-called “quasi-electrostatic equations”. In view of (1.25) the

assumption (1.28) also implies that the Helmholtz free energy ψ, and thus also the
polarization P and the entropy η, are only functions of %, θ and E .
Thirdly, we shall assume that the fluid is electrically non-conducting, i.e.

(1.29) J ≡ 0.

This assumption may not be fully justified in general, because some ERFs exhibit a

certain electrical conductivity which is often due to the content of water. However,
many of them are free of water and have very low electrical conductivity (for example

the polyurethane dispersions described in detail in [7], [8]), and thus we may restrict
ourselves to such a class.

In order to reach the final electrorheological approximation and to determine and
retain terms that are dominant and discard others that are insignificant, we will

carry out a dimensional analysis which follows closely the one in [38], [44]. Towards
this end we may introduce the following dimensionless quantities5:

E =
E
E0

, B =
B
B0

, q̄e =
qe

q0
, T =

T
T0
, v =

v
V0
, x =

x
L0
,(1.30)

t̄ =
t

t0
, P =

P
ε0E0

, % =
%

%0
, f̄ =

f
f0
, θ̄ =

θ

θ0
,

where the quantities with the subscript “0” are appropriate characteristic quantities
of the problem in question. In typical problems and for many ERFs (cf. [7], [8]), we

envisage that

E0 ∼ 3 · (104 − 106)Vm−1, V0 ∼ (10−3 − 1)ms−1,(1.31)

L0 ∼ 5 · (10−4 − 10−3)m, η0 ∼ (10−2 − 10−1) kg (m s)−1,

t0 ∼ (10−3 − 1) s, %0 ∼ 103 kgm−3.

The time t0 may be either a characteristic electric or hydrodynamic time, depending

on the specific problem. Moreover, %0 and η0 are the density and the dynamic
viscosity of the fluid in the absence of an electric field, respectively. Using (1.31),

the Reynolds number Re = (%0 L0 V0)/η0 and the Strouhal number Str = L0/(V0t0)
lie in the range

(1.32) 5 · 10−3 6 Re 6 5 · 102 and 5 · 10−4 6 Str 6 5 · 103,

5 In this section, dimensionless quantities and operators are denoted by a superposed bar.
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respectively. Magnetic quantities are missing in (1.31). No experimental observation

is known to us that shows that the magnetic field plays a significant role in elec-
trorheological applications. Usually, no external magnetic field is applied and thus
B is only induced due to the electric field. We interpret the secondary role of B
in ERFs through the assumptions that

(1.33)
E0

B0

L0

c2t0
= O(1),

resulting in

(1.34) B0 ∼ (10−16 − 10−10)Vs/m2.

Recall that c ≈ 3 · 108ms−1 denotes the speed of electro-magnetic waves in vacuo.

(1.33) is consistent with the assumption that the magnetic flux density is only induced
by oscillations of the electric field and/or the motion of a polarized body (cf. (1.42)).

Let us introduce a small non-dimensional number ε through

(1.35) ε ≡ 10−3,

which measures the importance of the terms. The situation described above—

together with an assumption that there are only few free charges in the fluid—can
thus be summarized as

L0

c t0
= O(ε3)−O(ε4),

V0

c
= O(ε3)−O(ε4),(1.36)

V0 t0
L0

= O(ε−1)−O(ε),
q0 L0

ε0E0
= O(ε3),

B0 L0

E0 t0
= O(ε5)−O(ε8),

E0 V0

B0 c2
= O(1).

The non-dimensionalized system of balance laws may then be approximated by re-
taining terms up to order ε2, while neglecting terms of higher order.

Firstly, let us discuss the role of E in the constitutive relations. It follows from
the definition of E that

(1.37) E =
E
E0

= E +
V0 B0

E0
v ×B = E +O(ε5),

where we used that

(1.38)
V0 B0

E0
= O(ε5)−O(ε7).

Thus, we can replace E by E in all non-dimensionalized constitutive relations.
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The dimensionless form of Maxwell’s equations (1.1)–(1.4) may be obtained upon

using the definitions of H, De, (1.28), (1.36) and (1.37) as

divE + divP =
q0 L0

ε0E0︸ ︷︷ ︸
O(ε3)

q̄e +O(ε5), curlE +
B0 L0

E0 t0︸ ︷︷ ︸
O(ε5)

∂B
∂t̄

= 0, divB = 0,

curlB +
E0 V0

B0 c2︸ ︷︷ ︸
O(1)

curl(v ×P) =
E0

B0

L0

c2 t0︸ ︷︷ ︸
O(1)

∂

∂t̄
(E + P)− q0 L0

ε0E0

E0 V0

B0 c2︸ ︷︷ ︸
O(ε3)

q̄ev +O(ε5),

where in O(ε5) only terms coming from (1.37) are included and where we also used
the relation ε0µ0 = c−2. Neglecting terms of O(ε3), we obtain the electrorheological
approximation of Maxwell’s equations according to6

div(ε0E + P) = 0,(1.39)

curlE = 0,(1.40)

div B = 0,(1.41)

1
µ0

curlB + curl(v ×P) =
∂(ε0E + P)

∂t
,(1.42)

where P = P(%, θ,E).
Now we turn to the approximation of the thermo-mechanical balance laws. The

conservation of mass (1.5) remains unaffected. In the momentum equation (1.6) we

re-write the electro-magnetic force f e using (1.8), (1.28), (1.29) and then use (1.36)
and (1.37), which leads to

%0 V0 L0

ε0E2
0 t0

%
∂v
∂t̄

+
%0 V

2
0

ε0E2
0

%[∇v]v − T0

ε0E2
0

divT(1.43)

= f0
L0

ε0E2
0

f̄ +
q0 L0

ε0E0︸ ︷︷ ︸
O(ε3)

(
qeE +

V0 B0

E0︸ ︷︷ ︸
O(ε5)

q̄ev ×B
)

+
B0 L0

E0 t0︸ ︷︷ ︸
O(ε5)

∂P
∂t̄

×B

+
V0B0

E0︸ ︷︷ ︸
O(ε5)

([∇P]v + (divv)P×B + v × ([∇B]P)) + [∇E]P +O(ε5),

where in O(ε5) only terms coming from (1.37) are included. We see that all under-
braced terms on the right-hand side of (1.43) have to be neglected. We shall retain

6 Since � = 0, we can rewrite (1.39)–(1.42) in terms of E, B, H, De only.

573



the mechanical force term and the term with the Cauchy stress. Furthermore, one

easily computes that

%0 V0 L0

ε0E2
0 t0

=





O(1)−O(ε2) if E2
0 ∼ 9 · 1012V2m−2,

O(ε−1)−O(ε1) if E2
0 ∼ 9 · 1010V2m−2,

O(ε−2)−O(1) if E2
0 ∼ 9 · 108V2m−2 ,

(1.44)

%0 V
2
0

ε0E2
0

=





O(1)−O(ε2) if E2
0 ∼ 9 · 1012V2m−2,

O(ε−1)−O(ε1) if E2
0 ∼ 9 · 1010V2m−2,

O(ε−2)−O(1) if E2
0 ∼ 9 · 108V2m−2.

(1.45)

Therefore also the first and the second term on the left-hand side of (1.43) have to

be kept. With regard to the approximation of the other thermo-mechanical non-
dimensionalized equations, we only replace E by E since we have no indication of
the behaviour of the other quantities.
Therefore, the electrorheological approximation of the thermo-mechanical balance

laws is given by

%̇+ % div v = 0,(1.46)

%v̇ − div T = f + [∇E]P,(1.47)

cv% θ̇ − k∆θ −
(∂P
∂θ

· Ė +
∂π

∂θ
trD

)
θ = (T− πI) ·D + w,(1.48)

(T − πI) ·D− (∇θ) · q
θ

> 0,(1.49)

where we used the definition of the specific heat cv and of the thermodynamic pres-

sure π according to

cv = −θ∂
2ψ

∂θ2
, π = −%2∂ψ

∂%
.

Moreover cv , P, π and ψ are functions of %, θ and E; while we have for the Cauchy
stress T = T(%, θ,∇θ,D,E).

1.2. Constitutive relations
Now we will develop a constitutive theory for ERFs. In order to keep the already

very long and complicated formulæ as simple as possible we keep the dependence
on ∇θ only in the constitutive relation for the heat flux q and assume that

(1.50) q = −k∇θ,

where the thermal conductivity k is a positive constant. In all other constitutive
relations we drop the dependence on ∇θ. We also restrict ourselves to the case of an
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incompressible ERF, i.e.

(1.51) trD = 0,

and consequently we also drop the dependence on % in all constitutive relations.

Moreover we assume a linear dependence of the polarization P on the electric field E,
i.e.

(1.52) P = χE(θ)E,

where χE is the dielectric susceptibility. The Cauchy stress can be splited according

to T = −πI+S. From the above assumptions and (1.27) we get that the extra stress
tensor S is of the form

(1.53) S = S(θ,D,E).

From representation theorems (cf. the appendix of [20] and the references stated

there) it follows that the most general form for S is given by

S = α2E⊗E + α3D + α4D2 + α5(DE⊗E + E⊗DE)(1.54)

+ α6(D2E⊗E + E⊗D2E),

where αi, i = 2, . . . 6 may be functions of the invariants

(1.55) θ, |E|2, trD2, trD3, tr(DE⊗E), tr(D2E⊗E).

In view of certain peculiarities in the behaviour of the normal stress differences in

the case α4 6= 0 even in the absence of an electric field (cf. [33]) and due to previous
mathematical investigations for shear dependent viscous fluids, which suggests that

terms involving D2 can be treated as a perturbation (cf. [31], [33]), we assume that

(1.56) α4 ≡ 0, α6 ≡ 0.

Based on experimental data (cf. [26], [3], [2], [1], [47]) we assume that in the presence
and the absence of an electric field the ERF behaves like a generalized Newtonian

fluid with power p, where the power p can depend on the magnitude of the electric
field |E|2. Moreover, we restrict ourselves to the case that the material functions α2,

α3 and α5 depend only on the invariants θ, |D|2 and |E|2 and that all terms have the
same growth behaviour. Thus we deal with the following model for the extra stress

tensor S

S = α21((1 + |D|2)(p−1)/2 − 1)E⊗E + (α31 + α33|E|2)(1 + |D|2)(p−2)/2D(1.57)

+ α51(1 + |D|2)(p−2)/2(DE⊗E + E⊗DE),
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where αij are constants and p = p(|E|2) is a C1-function such that

(1.58) 1 < p∞ 6 p(|E|2) 6 p0.

To ensure the validity of the Clausius-Duhem inequality we further require that the

constant coefficients αij and the function p are such that (cf. [44, Lemma 1.4.46])

α31 > 0, α33 > 0, α33 +
4
3
α51 > 0,(1.59)

k(p0)|α21| <
{

2
√
α33

√
2α51 if α33 6 4

3α51,√
3
2 (α33 + 4

3α51) if 4
3 |α51| 6 α33,

(1.60)

where k(p0) = 1 if p0 6 3 and k(p0) > 1 is a computable constant for p0 > 3.
Note that these requirements ensure that the operator induced by − div S(D,E) is
coercive.

2. Flows of shear dependent electrorheological fluids

In the previous section we have shown that the isothermal flow of an incompressible
shear dependent ERF is governed by the following system7

div E = 0,
(2.1)

curlE = 0,

∂tv − div S + [∇v]v +∇π = f + χE [∇E]E,
(2.2)

div v = 0,

div B = 0,
(2.3)

µ−1
0 curlB + χE curl(v ×E) = (ε0 + χE)∂tE,

S ·D + w = 0,(2.4)

where the extra stress tensor S is given by (1.57), (1.58).
The system (2.1)–(2.4) is separated. We first solve the quasi-static Maxwell’s equa-

tions (2.1) for the electric field and then seek for the velocity field by solving (2.2).

Knowing E and v we can solve (3.2) and (2.4). Note that the equation (2.4) has
to be interpreted as an equation for the mechanical energy supply density w. It

was already pointed out in the previous section that the magnetic induction B is of

7We have divided equation (1.47) by the constant density %0 and adapted the notation
appropriately.
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secondary importance, which is reflected by the structure of the above system. More-

over, the quasi-static Maxwell’s equations (2.1) are widely studied in the literature
(cf. the overview article Milani/Picard [34]). Since in this investigation of ERFs we
are mainly interested in the velocity field v, we shall only consider the system (2.2),
in which E is assumed to be any given vector field, having certain regularity prop-
erties. Moreover, for simplicity we shall complete (2.2) by space periodic boundary

conditions and an initial condition v0.

In order to prove existence results for the system (2.2) we need some structure
conditions for the extra stress tensor S, which unfortunately are stronger than the
conditions we have to assume for the validity of the Clausius-Duhem inequality,
which is a physical requirement. In the following we assume that the constant coef-

ficients αij and the function p are such that the operator induced by − div S(D,E)
is uniformly monotone, i.e.

(2.5)
∂Sij(D,E)
∂Dkl

BijBkl > γ1(1 + |E|2)(1 + |D|2)(p(|E|2)−2)/2|B|2

is satisfied for all B,D ∈ X := {D ∈ � 3×3
sym , trD = 0}, and that the following growth

conditions are satisfied for i, j, k, l, n = 1, 2, 3,

∣∣∣∂Sij(D,E)
∂Dkl

∣∣∣ 6 γ2(1 + |E|2)(1 + |D|2)(p(|E|2)−2)/2,(2.6)

∣∣∣∂Sij(D,E)
∂En

∣∣∣ 6 γ3|E|(1 + |E|2)(1 + |D|2)(p(|E|2)−1)/2(1 + ln(1 + |D|2)).(2.7)

Conditions for αij and p that ensure the validity of (2.5) can be found in [44, Chap-

ter 1]. We will show that the coercivity, i.e. that

(2.8) S(D,E) ·D > c(1 + |E|2)(1 + |D|2)(p(|E|2)−2)/2|D|2

holds for all D ∈ X , is a consequence of (2.5).8
Before formulating the main result of this section, we introduce some notation.

Let Ω = (0, L)3, L ∈ (0,∞) be a cube in � 3 and denote Γj = ∂Ω ∩ {xj = 0} and
Γj+3 = ∂Ω ∩ {xj = L}, for j = 1, 2, 3. For T ∈ (0,∞), we denote by QT the

time-space cylinder I × Ω, where I = [0, T ] is a time interval. By D(Ω) we denote
the space of smooth periodic functions with mean value zero. Let further q > 1
and k > 0. Then (Lq(Ω), ‖ · ‖q) and (W k,q(Ω), ‖ · ‖k,q), respectively, is used for the
usual Lebesgue and Sobolev spaces, of periodic functions with mean value zero. By

8As was already pointed out the coercivity and the Clausius-Duhem inequality are almost
equivalent. In fact, if p is independent of |E|2 than these two requirements are the same.
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〈f, g〉 :=
∫
Ω
fg dx we denote the scalar product with respect to space. We also need

Lebesgue and Sobolev spaces with variable exponents, which are denoted by Lp(·)(G)
and W k,p(·)(G), respectively, where G = Ω or G = QT . For a given p(·) ∈ L∞(G),
1 < p∞ 6 p(x) 6 p0 <∞, we define the modular

%p(f) = %p,G(f) :=
∫

G

|f(y)|p(y) dy.

Similarly to the Luxemburg norm in Orlicz spaces we define

‖f‖p(·) := inf{λ > 0 | %p(λ−1f) < 1},

which is a norm on the generalized Lebesgue space

Lp(·)(G) := {f ∈ L1(G) | %p(λ−1f) <∞ for some λ > 0}.

Generalized Sobolev spaces are defined analogously. We refer to Kováčik/Rákos-
ník [28] for a detailed treatment of these spaces. Moreover, we denote by Lq(I ;X)
the Bochner spaces which are equipped with the norm

(∫
I ‖ · ‖

q
X ds

)1/q
. In the

following we use for the partial derivative with respect to time the symbol ∂t. We

shall further make frequent use of spaces of divergence free functions defined by

V := {ψ ∈ D(Ω): divψ = 0},
Vp := the closure of V with respect to the ‖∇ · ‖p-norm,

and use the following expressions, for functions v and E defined on the space-time
cylinder QT ,

I(t,v) :=
∫

Ω

∂Sij(Dv(t),E(t))
∂Dkl

Dij(∇v)(t)Dkl(∇v)(t) dx,(2.9)

J (t,v) :=
∫

Ω

∂Sij(Dv(t),E(t))
∂Dkl

Dij(∂tv)(t)Dkl(∂tv)(t) dx,(2.10)

which are related to the extra stress tensor S.
We are seeking solutions v of the system (2.2) completed with the initial condition

(2.11) v(0) = v0,

and with space-periodic boundary conditions

v
∣∣
Γj

= v
∣∣
Γj+3

, ∇v
∣∣
Γj

= ∇v
∣∣
Γj+3

, π
∣∣
Γj

= π
∣∣
Γj+3

,(2.12)

for j = 1, 2, 3. Now we can formulate the main result of this section.
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Theorem 2.13. Assume that the extra stress tensor S satisfies (2.5)–(2.7) and
S(0,E) = 0. Let v0 ∈ W 2,2(Ω) ∩ Vp be a given initial velocity, f ∈ C(I ;W 1,2(Ω)),
∂tf ∈ C(I ;L2(Ω)) be a given force, E ∈ W 1,∞(I ;W 1,∞(Ω)) be a given electric field
and let p = p(|E|2) be a C1-function with p∞ 6 p(|E|2) 6 p0. If

3
2
< p∞ 6 p0 6 2

then there exists a time T ∗ > 0, such that a strong solution v of the system (2.2)
exists on I ′ := [0, T ∗]. This solution satisfies

(2.14) ess sup
s∈I′

‖∂tv(s)‖22 +
∫ T∗

0

I(t,v)
5p∞−6
2−p∞ + J (t,v) dt 6 C(f ,v0,E).

In particular we have that for 1 < r < 6(p∞ − 1)

v ∈ Lp∞
5p∞−6
2−p∞

(
I ′;W 2,

3p∞
p∞+1 (Ω)

)
∩ C(I ′;Vr),(2.15)

∂tv ∈ L
p∞(5p∞−6)

(3p∞−2)(p∞−1)
(
I ′;W 1,

3p∞
p∞+1 (Ω)

)
∩ L∞(I ′;L2(Ω)),

∂2
t v ∈ L2(I ′; (V2)∗).

��������� �
2.16. With a more refined technique one can show that the statement

of the theorem is valid for 7
5 < p∞ 6 p0 6 2 (cf. [14, Theorem 21]).

The main problem in the proof of the previous theorem consists in the identification
of the limit

lim
N→∞

∫ T

0

∫

Ω

S(DvN ,E) ·D(ϕ) dx dt

where vN is some approximate solution of (2.2). The method used here is based
on Vitali’s convergence theorem and the almost everywhere convergence of DvN .

This method was developed in [31], [32], [6], [30], [14] to handle situations when the
theory of monotone operators fails to identify the above limit. It is worth noticing

that unsteady problems for ERFs cannot be treated with the help of monotonicity
methods even for large p∞ due to the non-standard growth of the governing system,

i.e. within the classical Sobolev spaces our assumptions (2.5)–(2.7) imply

C(1 + |D|)p∞−2|D|2 6 S(D,E) ·D 6 C̃(1 + |D|)p0−2|D|2.

Before we start with the proof of the above theorem we need some preliminary
results related to the extra stress tensor S. Let us start with an algebraic lemma.
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We write f ∼= g iff there exist constants C0, C1 > 0 such that

C0f 6 g 6 C1f,

where we always indicate on which quantities the constants may depend.

Lemma 2.17. For all A,B ∈ � d×d and all q > 1 there holds

∫ 1

0

(1 + |B + s(A−B)|)q−2 ds ∼= (1 + |B|+ |A|)q−2,

with constants depending on q only.
!"� #$#&%

. The proof can be found in [24, Lemma 8.3]. �
��������� �

2.18. Since |A| + |A − B| 6 2(|A| + |B|) 6 4(|A| + |A − B|) we
immediately obtain from Lemma 2.17 that for all A,B ∈ � d×d and all q > 1 there
holds ∫ 1

0

(1 + |B + s(A−B)|)q−2 ds ∼= (1 + |B|+ |A−B|)q−2,

with constants depending on q only.

Lemma 2.19. Suppose that S satisfies (2.5) and (2.6) and S(0,E) = 0. Then
there holds for all A,B ∈ � 3×3

sym and all E ∈ � 3

S(A,E) ·A ∼= |A|2(1 + |A|)p(|E|2)−2,(a)

(S(A,E)− S(B,E)) · (A−B) ∼= |A−B|2(1 + |B|+ |A|)p(|E|2)−2,(b)

|S(A,E)− S(B,E)| ∼= |A−B|(1 + |B|+ |A|)p(|E|2)−2,(c)

|S(A,E)| ∼= |A|(1 + |A|)p(|E|2)−2,(d)

with constants depending on p∞, p0 (cf. (1.58)) and 1 + |E|2 only.
!"� #$#&%

. Note that the statement (a) is a special case of (b) by choosing B = 0
and using S(0,E) = 0. In the same way (d) follows from (c). In order to prove (b)
one notices that (2.5), (2.6) and Lemma 2.17 yield

(S(A,E)− S(B,E)) · (A−B)

=
∫ 1

0

∂Sij(B + s(A−B),E)
∂Dkl

(A−B)kl(A−B)ij ds

∼= |A−B|2
∫ 1

0

(1 + |B + s(A−B)|)p−2 ds

∼= |A−B|2(1 + |B|+ |A|)p−2,

580



where we used (1 + y2)
1
2 ∼= (1 + |y|). From this we immediately obtain

|A−B|2(1 + |B|+ |A|)p−2 6 c(S(A,E)− S(B,E)) · (A−B)

6 c|S(A,E)− S(B,E)| |A−B|,

which delivers the first inequality in (c). For the other inequality we use (2.6) and
Lemma 2.17 to obtain

|S(A,E)− S(B,E)| =
∣∣∣∣
∫ 1

0

∂2Sij(B + s(A−B),E)
∂Dkl

ds(A−B)kl

∣∣∣∣
6 c|A−B|(1 + |B|+ |A|)p−2,

which finishes the proof. �
��������� �

2.20. Note that in the right-hand sides in Lemma 2.19 one can replace
1 + |B|+ |A| by 1 + |B|+ |A−B|.

Now we derive lower bounds for the expressions I(t,v) and J (t,v), defined in (2.9)
and (2.10), for which we will often simply write I(v) and J (v). They arise from
testing (2.2) with −∆v and “∂2

t v”, respectively. The expression (1 + |Dv|2)1/2 will

appear quite often, so it is very useful to introduce the abbreviation

(2.21) D̃v := (1 + |Dv|2)1/2.

As a consequence of (2.5) we have

I(t,v) > γ1

∫

Ω

(D̃v(t))p(|E(t)|2)−2|D(∇v)(t)|2 dx,(2.22)

J (t,v) > γ1

∫

Ω

(D̃v(t))p(|E(t)|2)−2|D(∂tv)(t)|2 dx.(2.23)

Note that ∂j∂kvm = ∂jDkmv + ∂kDmjv − ∂mDjkv, which implies

(2.24) |∇2v| 6 3|D(∇v)| 6 3|∇2v|.

Thus, |D(∇v)| can always be replaced by |∇2v| (and vice versa) by increasing the
multiplicative constant.
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Lemma 2.25. Let S satisfy (2.5) and (2.6). Then for all (sufficiently smooth) v,
for all 1 6 r 6 2, and almost every t ∈ I there holds:

‖D(∇v)(t)‖r 6 C(I(t,v))1/2
∥∥(D̃v(t))

2−p(|E(t)|2 )
2

∥∥
2/(2−r)

,(2.26)

‖D(∂tv)(t)‖r 6 C(J (t,v))1/2
∥∥(D̃v(t))

2−p(|E(t)|2)
2

∥∥
2/(2−r)

,(2.27)

where 2r/(2− r) = ∞ for r = 2.
!"� #$#&%

. Observe that 1 6 2/r < ∞ and 1 < (2/r)′ = 2/(2− r) 6 ∞. Further
for 1 6 r < 2 we have

‖Dw‖r
r =

∫

Ω

((D̃v)p−2|Dw|2)r/2(D̃v)(2−p)r/2 dx

6
(∫

Ω

(D̃v)p−2|Dw|2 dx
)r/2∥∥(D̃v)(2−p)r/2

∥∥
2/(2−r)

=
(∫

Ω

(D̃v)p−2|Dw|2 dx
)r/2∥∥(D̃v)(2−p)/2‖r

2r/(2−r).

Choosing now w = ∇v and w = ∂tv and using (2.22) and (2.23), respectively, we
obtain the assertions of the lemma for r < 2. The case r = 2 is treated similarly. �

Lemma 2.28. Let S satisfy (2.5) and (2.6). For all (sufficiently smooth) v with∫
Ω

v dx = 0 and almost every t ∈ I there holds

‖∇v(t)‖p∞
1, 3p∞

p∞+1
6 C(I(t,v) + 1),(2.29)

‖∂tv(t)‖p∞
1, 3p∞

p∞+1
6 CJ (t,v)p∞/2(I(t,v) + 1)(2−p∞)/2(2.30)

6 C(J (t,v) + I(t,v) + 1).(2.31)

!"� #$#&%
. From Lemma 2.25 (r 7→ 3p∞

p∞+1 ) we deduce, also using 2− p 6 2− p∞,

‖D(∇v)‖ 3p∞
p∞+1

6 CI(v)1/2‖(D̃v)
2−p
2 ‖ 6p∞

2−p∞

6 CI(v)1/2‖(D̃v)
2−p∞

2 ‖ 6p∞
2−p∞

6 CI(v)1/2(1 + ‖Dv‖3p∞)
2−p∞

2

6 CI(v)1/2
(
1 + C‖∇Dv‖ 3p∞

p∞+1

)2−p∞
2 ,

since
∫
Ω

v dx = 0. Due to ∇Dv = D(∇v), this implies

‖D(∇v)‖p∞
3p∞

p∞+1
6 C(I(v) + 1).
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From (2.24) and
∫
Ω

v dx = 0 we get

‖∇v‖p∞
1, 3p∞

p∞+1
6 C(I(v) + 1).

Analogously we can use Lemma 2.5 to get

‖D(∂tv)‖ 3p∞
p∞+1

6 CJ (v)‖1/2‖(D̃v)
2−p∞

2 ‖ 6p∞
2−p∞

6 CJ (v)1/2
(
1 + C‖∇Dv‖ 3p∞

p∞+1

) 2−p∞
2

(2.29)

6 CJ (v)1/2
(
1 + C(I(v) + 1)

1
p∞

) 2−p∞
2

6 CJ (v)1/2(1 + I(v))
2−p∞
2p∞ .

Again
∫
Ω v dx = 0 and Korn’s inequality imply

‖∂tv‖1, 3p∞
p∞+1

6 C‖D(∂tv)‖ 3p∞
p∞+1

6 CJ (v)1/2(1 + I(v))
2−p∞
2p∞ ,

which proves (2.30). The last inequality follows from Young’s inequality. �

2.1. A priori estimates
Now we use a Galerkin approximation to derive a priori estimates for approximate

solutions vN of the system (2.2). These estimates allow the limiting process N →∞
showing the existence of a solution v of the system (2.2).
Let {ωr} denote the set consisting of the eigenvectors of the Stokes operator de-

noted by A. Let λr be the corresponding eigenvalues and XN := span{ω1, . . . ,ωN}.
Note that 〈ωr, 1〉 = 0. Define PNv :=

N∑
r=1

〈v,ωr〉ωr. Then we have

(2.32) λr

〈
ωr,vN

〉
=

〈
Aωr,vN

〉
=

〈∇ωr,∇vN
〉

and PN : W s,2 → (XN , ‖ · ‖s,2) are uniformly continuous for all s ∈ [0, 3] (cf. [42],
[30]).

Setting fN = PN f we seek the approximate solution vN (t, x) =
N∑

r=1
cNr (t)ωr(x),

where the coefficients cNr (t) solve the Galerkin system (for all 1 6 r 6 N)

〈
∂tvN ,ωr

〉
+

〈
S(DvN ,E)Dωr

〉
+

〈
[∇vN ]vN ,ωr

〉
(2.33)

=
〈
fN ,ωr

〉
− χE 〈E⊗E,Dωr〉 ,

vN (0) = PNv0.
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Since the matrix 〈ωj ,ωk〉 with j, k = 1, . . . , N is positive definite, the Galerkin
system (2.33) can be re-written as a system of ordinary differential equations. This
in turn fulfills the Carathéodory conditions and is therefore solvable locally in time,
i.e. on a small time interval I∗ = [0, T ∗). From the assumptions on f in Theorem 2.13
it follows that fN = PN f ∈ L∞(I ;W 1,2(Ω)) and ∂tfN = PN (∂tf) ∈ L2(I ;L2(Ω)).
This implies cNr , ∂tc

N
r , ∂

2
t c

N
r ∈ L2(I∗). Thus vN , ∂tvN , ∂2

t v
N ∈ L2(I∗;XN). (Note

that the norms may depend on N). To ensure solvability for large times at least for
this finite dimensional problem we have to establish a first a priori estimate.

Since vN ∈ L2(I∗;XN ), we can test (2.33) with vN and get

(2.34)
1
2
dt‖vN‖22 +

〈
S(DvN ,E),DvN

〉
=

〈
fN ,vN

〉
− χE

〈
E⊗E,DvN

〉
.

Note that
〈
[∇vN ]vN ,vN

〉
= 0 due to div vN = 0. From the coercivity of S

(cf. Lemma 2.19 (a)) and the pointwise inequalities

(1 + y2)
q−2
2 y2 > C(q)(yq − 1), (1 + y2)

p(|E|2)−2
2 > (1 + y2)

p∞−2
2

we deduce that the second term on the left-hand side of (2.34) is bounded from below

by

C2

∫

Ω

(
1 + |E|2)(|DvN |p(|E|2) + |DvN |p∞

)
dx− C

∫

Ω

1 + |E|2 dx.

The terms on the right-hand side of (2.34) are bounded from above by

C2

2

∫

Ω

(1 + |E|2)|DvN |p∞ dx+ C‖E‖22 + C‖f‖p′∞
2 .

Integration over time and Gronwall’s inequality thus imply

max
[0,T∗]

‖vN‖22 +
∫ T∗

0

∫

Ω

|DvN |p(|E|2) + |DvN |p∞ dx dt 6 C(T, f ,v0,E).

In particular we get

‖cNr ‖L∞(I∗) 6 C(T, f ,v0,E), 1 6 r 6 N.

As a consequence we can iterate Carathéodory’s theorem to push the solvability of the

Galerkin system (2.33) up to any fixed time interval I = [0, T ]. Hence, independently
of N

(2.35) ‖vN‖2L∞(I;L2(Ω)) + %p(|E|2),QT
(DvN ) + ‖∇vN‖p∞

Lp∞(QT ) 6 C,

where we have also used Korn’s inequality in Lp∞(Ω).
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We got the first a priori estimate by using vN as a test function. To derive our

second a priori estimate we want to use AvN as a test function. The special choice
of base functions ωr ensures that we do not leave XN , the space of admissible test
functions. More explicitly we multiply the rth equation of the Galerkin system (2.33)

by λrc
N
r and use (2.32) to obtain

〈
∂tvN , AvN

〉
+

〈
S(DvN ,E),D(AvN )

〉
+

〈
[∇vN ]vN , AvN

〉
(2.36)

=
〈∇fN ,∇vN

〉
− χE

〈
E⊗E,D(AvN )

〉
.

Due to the periodicity we have A = −∆, and thus

∫

Ω

[∇vN ]vN ·AvN dx =
∫

Ω

∂vN
j

∂xk

∂vN
i

∂xj

∂vN
i

∂xk
dx 6 ‖∇vN‖33,(2.37)

−χE

∫

Ω

E⊗E ·D(AvN ) dx = 2χE

∫

Ω

Ei
∂Ej

∂xk
Dij

(∂vN

∂xk

)
dx(2.38)

6 γ1

8

∫

Ω

(D̃vN )p(|E|2)−2|D(∇vN )|2 dx

+ C(γ1,E,∇E)
∫

Ω

(D̃vN )2−p(|E|2) dx,
∫

Ω

S(DvN ,E) ·D(AvN ) dx =
∫

Ω

∂Sij(DvN ,E)
∂Dkl

Dkl(∇vN )Dij(∇vN ) dx(2.39)

+
∫

Ω

∂Sij(DvN ,E)
∂Ek

∇EkDij(∇vN ) dx.

The right-hand side of (2.39) is bounded from below by

1
2
I(vN ) +

γ1

2

∫

Ω

(D̃vN )p(|E|2)−2|D(∇vN )|2 dx

− γ1

8

∫

Ω

(D̃vN )p(|E|2)−2|D(∇vN )|2 dx

− C(γ1,∇E)
∫

Ω

(D̃vN )p(|E|2)(1 + ln(D̃vN )2)2 dx,

where we used the definition of I, (2.22) and Young’s inequality. Thus we have

dt‖∇vN‖22 + I(vN ) +
γ1

2

∫

Ω

(D̃vN )p(|E|2)−2|D(∇vN )|2 dx(2.40)

6 C(1 + ‖∇vN‖33 + |〈∇fN ,∇vN 〉|+ %p(|E|2),Ω(DvN )),

where we also used the estimate ln(1 + y2) 6 c(1 + y2)
1
4 and p(|E|2) 6 p0 6 2,

2− p(|E|2) 6 p(|E|2).
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If p > 11
5 one can show that ‖∇vN‖33 6 Cε‖∇vN‖p

p ‖∇vN‖22 + εI(vN ) (see [30]),
which enables us to apply Gronwall’s inequality after absorbing εI(vN ) on the left-
hand side. This would give us a global estimate. If p > 5

3 we can show that
‖∇vN‖33 6 Cε‖∇vN‖p

p ‖∇vN‖R
2 + εI(vN ) for some constant 1 < R <∞ and there-

after absorb εI(vN ) on the left-hand side and apply a local version of Gronwall’s
inequality (cf. Lemma 2.52). This would give us an estimate for small times. Nev-

ertheless we will not make use of these facts, since we are also interested in smaller
values of p than 5

3 .

We will test immediately with “∂tvN∂t” to get in addition to (2.40) another es-

timate. Then we will use the resulting two estimates at the same time to derive
quite strong a priori estimates for vN for values up to p > 3

2 . Let us take the time

derivative of the Galerkin system (2.33):

〈
∂2

t v
N ,ωr

〉
+

〈
∂tS(DvN ,E),Dωr

〉
+

〈
∂t([∇vN ]vN ),ωr

〉
(2.41)

=
〈
∂tfN ,ωr

〉
− χE 〈∂t(E⊗E),Dωr〉 ,

for 1 6 r 6 N . Since vN ∈ W 2,2(I ;Xn), this makes sense and we can even test with
∂tvN ∈W 1,2(I ;Xn) resulting in

1
2
dt‖∂tvN‖22 +

〈
∂tS(DvN ,E),D(∂tvN )

〉
+

〈
∂t([∇vN ]vN ), ∂tvN

〉

=
〈
∂tfN , ∂tvN

〉
− χE

〈
∂t(E⊗E),D(∂tvN )

〉
.

Similarly as in (2.38) and (2.39) we get

−χE

∫

Ω

∂t(E⊗E) ·D(∂tvN ) dx 6 γ1

8

∫

Ω

(D̃vN )p(|E|2)−2|D(∂tvN )|2 dx

+ C(γ1,E, ∂tE)
∫

Ω

(D̃vN )2−p(|E|2) dx,
∫

Ω

∂tS(DvN ,E) ·D(∂tvN ) dx =
∫

Ω

∂Sij(DvN ,E)
∂Dkl

Dkl (∂tvN )Dij(∂tvN ) dx

+
∫

Ω

∂Sij(DvN ,E)
∂Ek

∂tEkDij(∂tvN ) dx

> 1
2
J (vN ) +

γ1

2

∫

Ω

(D̃vN )p(|E|2)−2|D(∂tvN )|2 dx

− γ1

8

∫

Ω

(D̃vN )p(|E|2)−2|D(∂tvN )|2 dx

− C(γ1, ∂tE)
∫

Ω

(D̃vN )p(|E|2)(1 + ln(D̃vN )2)2 dx,
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where we used the definition of J , (2.23) and Young’s inequality. This yields
(cf. (2.40)), also using div vN = 0 in the convective term,

dt‖∂tvN‖22 + J (vN ) +
γ1

2

∫

Ω

(D̃vN )p(|E|2)−2|D(∂tvN )|2 dx(2.42)

6 C
(
1 +

∣∣〈[∇vN ]∂tvN , ∂tvN
〉∣∣ +

∣∣〈∂tfN , ∂tvN
〉∣∣ + ‖∇vN‖33

+ %p(|E|2),Ω(DvN )
)
.

Recall that

dt‖∇vN‖22 + I(vN ) +
γ1

2

∫

Ω

(D̃vN )p(|E|2)−2|D(∇vN )|2 dx(2.43)

6 C
(
1 + ‖∇vN‖33 +

∣∣〈∇fN ,∇vN
〉∣∣ + %p(|E|2),Ω(DvN )

)
.

At first sight, we have gained nothing. We have to control one more bad term, namely
|〈[∇vN ]∂tvN , ∂tvN 〉|, but we only got more information about the time derivative
of vN . But the critical term ‖∇vN‖33, which gave the lower bound for p, has no time
derivatives. The next lemma shows that J (vN ) reveals indeed more information.

Lemma 2.44. Let 1 < q <∞, then for almost every t ∈ I

dt(‖D̃v(t)‖q
q) 6 CJ (t,v)

1
2 (%2q−p(|E(t)|2),Ω(D̃v(t)))1/2(2.45)

6 εJ (t,v) + Cε%2q−p(|E(t)|2),Ω(D̃v(t)),

where %2q−p(|E|2),Ω(D̃v) =
∫
Ω
(D̃v)2q−p(|E|2) dx even if 2q − p(|E|2) < 1.

!"� #$#&%
. Note that

∂t((D̃v)q) = q(D̃v)q−2(Djkv)(∂tDjkv).

Hence

dt(‖D̃v‖q
q) 6 q

∫

Ω

(D̃v)q−1‖∂tDv‖ dx

= q

∫

Ω

(D̃v)
p−2
2 |D(∂tv)|(D̃v)q− 1

2 p dx

6 qCJ (v)
1
2 (%2q−p(|E|2),Ω(D̃v))

1
2 ,

by Hölder’s inequality, which proves the first assertion. The second follows from
Young’s inequality. �
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This lemma enables us to produce dt(‖D̃vN‖q
q) on the left-hand side of (2.42) if we

add C%2q−p(|E|2),Ω(D̃v) to the right-hand side. Thus we have three terms to control:

(2.46) ‖∇vN‖33, |〈[∇vN ]∂tvN , ∂tvN 〉|, %2q−p(|E|2),Ω(D̃vN ).

The first and the second one will be easier to estimate for large q, but the third
one for small q. The problem now is to find the optimal choice for q. We start by

examining which values of q are needed for the first and the second term. In view
of local Gronwall’s inequality (cf. Lemma 2.52), we will be able to control arbitrary

powers of ‖D̃vN‖q
q and ‖∂tvN‖22.

Lemma 2.47. Let q > 9−3p∞
2 , then there exists a constant R1 = R1(p∞) > q,

such that

‖∇v‖33 6 Cε‖D̃v‖R1
q + εI(v) + ε.

!"� #$#&%
. If q > 3, then there is nothing to prove, so assume q < 3. We interpolate

L3(Ω) = [Lq(Ω), L3p∞(Ω)]θ with θ = (3−q)p∞
3p∞−q , 1− θ = q(p∞−1)

3p∞−q and obtain

‖∇v‖33 6 ‖∇v‖3(1−θ)
q ‖∇v‖3θ

3p∞ .

If 3θ < p∞, there exists an δ > 1 such that

‖∇v‖33 6 Cε‖∇v‖3(1−θ)δ′
q + ε‖∇v‖p∞

3p∞

6 Cε‖∇v‖3(1−θ)δ′
q + εC‖∇v‖p∞

1, 3p∞
p∞+1

6 Cε‖∇v‖3(1−θ)δ′
q + εC(I(v) + 1),

where we used Lemma 2.28. So by Korn’s inequality

‖∇v‖33 6 Cε2‖D̃v‖3(1−θ)δ′
q + ε2I(v) + ε2.

We still have to verify 3θ < p∞, but this is equivalent to

3(3− q)p∞
3p∞ − q

< p∞ ⇐⇒ 9− 3p∞
2

< q,

which holds due to the assumption on q. �
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Lemma 2.48. Let q > 9−3p∞
2 , then there exist constants R2 = R2(p∞) > 2 and

R3 = R3(p∞) > q such that

|〈[∇v]∂tv, ∂tv〉| 6 εJ (v) + Cε(‖∂tv‖R2
2 + ‖D̃v‖R3

q + 1).

!"� #$#&%
. Note that Lemma 2.25 (r 7→ 2q

2−p∞+q ) implies

‖D(∂tv)‖ 2q
2−p∞+q

6 CJ (v)
1
2 ‖(D̃v)‖

2−p
2
2q

2−p∞
(2.49)

6 CJ (v)
1
2 ‖D̃v‖

2−p∞
2

q ,

where we used that (1 + y2)(2−p)/4 6 (1 + y2)(2−p∞)/4. Furthermore we have the

embedding W 1, 2q
2−p∞+q (Ω) ↪→ L

6q
6−3p∞+q (Ω). Since 9−3p∞

2 < q is equivalent to 2q
q−1 <

6q
6−3p∞+q , we can interpolate L

2q
q−1 (Ω) = [L2(Ω), L

6q
6−3p∞+q (Ω)]θ. This and Korn’s

and Young’s inequalities imply

|〈[∇v]∂tv, ∂tv〉| 6 ‖∂tv‖22q
q−1
‖∇v‖q

6 C‖∂tv‖2(1−θ)
2 ‖∂tv‖2θ

6q
6−3p∞+q

‖∇v‖q

6 C‖∂tv‖2(1−θ)
2 ‖∂t∇v‖2θ

2q
2−p∞+q

‖∇v‖q

(2.49)

6 C‖∂tv‖2(1−θ)
2 (J (v)

1
2 ‖D̃v‖

2−p∞
2

q )2θ‖∇v‖q

6 εJ (v) + Cε(‖∂tv‖R2
2 + ‖D̃v‖R3

q + 1).

�

It is indeed interesting that both terms |〈[∇v]∂tv, ∂tv〉| and ‖∇vN‖33 require the
same bound for q, which is q > 1

2 (9− 3p∞). Now we have to find the upper bound
for q, in order to control %2q−p(|E|2),Ω(D̃vN ). For that we require q 6 1

2 (3 + p∞) and
obtain

∫

Ω

|D̃vN |2q−p(|E|2) dx 6
∫

Ω

|D̃vN |2q−p∞ dx = ‖D̃vN‖2q−p∞
2q−p∞ 6 C(‖∇vN‖33 + 1),

since 2q−p∞ 6 3. That means that %2q−p(|E|2),Ω(D̃vN ) can be controlled if ‖∇vN‖33
can be controlled. But for p∞ > 3

2 we can always find q such that

9− 3p∞
2

< q 6 3 + p∞
2

.
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Thus all terms in (2.46) can be controlled under this condition. It remains to control

the terms involving fN in (2.42) and (2.43), which is easily established by

|〈∇fN ,∇vN 〉| 6 ‖PN f‖1,2 ‖∇vN‖2 6 C‖f‖1,2 ‖∇vN‖2
6 C‖f‖21,2 + C‖D̃vN‖2q ,

|〈∂tfN , ∂tvN 〉| 6 ‖PN(∂tf)‖2 ‖∂tvN‖2 6 C‖∂tf‖2 ‖∂tvN‖2
6 C‖∂tf‖22 + C‖∂tvN‖22.

Finally we have, since p(|E|2) 6 p0 6 2 6 q,

(2.50) %p(|E|2),Ω(DvN ) 6 ‖D̃vN‖p0
p0

6 C‖D̃vN‖2q.

Hence by Lemma 2.47, Lemma 2.48, Korn’s inequality, and the above calculations
we get, for max

(
2, 9−3p∞

2

)
< q 6 3+p∞

2 ,

dt‖∂tvN‖22 + dt(‖D̃v(t)‖q
q) + dt‖∇vN‖22 + I(vN ) +

γ1

2
J (vN )

6 C(1 + |〈[∇v]∂tvN , ∂tvN 〉|+ |〈∂tfN , ∂tvN 〉|+ %p(|E|2),Ω(DvN )

+ |〈∇fN ,∇vN 〉|+ ‖∇vN‖33 + %2q−p(|E|2),Ω(D̃vN ))

6 C(1 + ‖D̃vN‖max(R1,R3,2)
q + ‖∂tvN‖max(R2,2)

2 + ‖f‖21,2 + ‖∂tf‖22).

The following lemma ensures that for small times T ′ we get boundedness (uniformly
with respect to N) of the following expressions, for max

(
2, 9−3p∞

2

)
< q 6 3+p∞

2 :

‖∂tvN‖2L∞(I′;L2(Ω)), ‖∇vN‖q
L∞(I′;Lq(Ω)),(2.51)

‖I(vN )‖L1(I′), ‖J (vN )‖L1(I′),

where I ′ = [0, T ′]. These a priori estimates in turn are sufficient to pass to the
limit N →∞ to get a solution v of our original problem (2.2).

Lemma 2.52 (local version of Gronwall’s lemma). Let T, α, c0 > 0 be given
constants and let 0 < h ∈ C([0, T ]), 0 6 f ∈ C1([0, T ]) satisfy

(2.53) f ′(t) 6 h(t) + c0f(t)1+α.

Then

f(t) 6 H(t) +H(t0)
(
(1− αc0H(t0)α t)−

1
α − 1

)

for all t ∈ [0, t0), where

H(t) := f(0) +
∫ t

0

h(s) ds,

and where t0 is defined by the condition αc0H(t0)α t0 = 1.
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!"� #$#&%
. Define a : [0, t0) → � >0 by

a(t) := H(t0)
(
(1− αc0H(t0)α t)−

1
α − 1

)
.

Then a solves
a′(t) = c0(H(t0) + a(t))1+α,

a(0) = 0.

Setting z(t) := H(t) + a(t) we see that for all t ∈ [0, t0) holds

z′(t) = h(t) + a′(t) = h(t) + c0(H(t0) + a(t))1+α

> h(t) + c0(H(t) + a(t))1+α = h(t) + c0z(t)1+α.

Since z(0) > f(0) we get from this and (2.53) that f ′(0) < z′(0). Consequently, there
exists t′ > 0 such that for all t ∈ [0, t′] holds f(t) 6 z(t). Iterating this argument we
obtain the assertion of the lemma. �

In order to derive the last estimate from Theorem 2.13 we go once more into (2.36)
and move the term with the time derivative to the right-hand side. This gives

I(vN ) 6 C
(
1 + ‖∇vN‖33 + |〈∇fN ,∇vN 〉|+ %p(|E|2),Ω(DvN ) + |〈∂tvN ,−∆vN 〉|

)
.

Using

‖fN‖L∞(I;W 1,2(Ω)) = ‖PN f‖L∞(I;W 1,2(Ω)) 6 C‖f‖L∞(I;W 1,2(Ω)) 6 C,

together with (2.50), (2.51) and Lemma 2.47, for q > max
(
2, 1

2 (9− 3p∞)
)
, we get

(2.54) I(vN ) 6 C
(
1 + |〈∂tvN ,−∆vN 〉|

)
.

The following lemma gives control of the remaining term |〈∂tvN ,−∆vN 〉|.

Lemma 2.55. For 1 < p∞ 6 2 there holds

|〈∂tv,∆v〉| 6 C‖∂tv‖
4(p∞−1)
3p∞−2

2 J (v)
2−p∞

2(3p∞−2) (I(v) + 1)
p∞+2

2(3p∞−2) .

!"� #$#&%
. With the help of Lemma 2.28 we conclude

|〈∂tv,∆v〉| 6 ‖∂tv‖ 3p∞
2p∞−1

‖v‖2, 3p∞
p∞+1

6 C‖∂tv‖ 3p∞
2p∞−1

(I(v) + 1)1/p∞

6 C‖∂tv‖1−θ
2 ‖∂tv‖θ

1, 3p∞
1+p∞

(I(v) + 1)1/p∞

6 C‖∂tv‖1−θ
2 (J (v)

1
2 (I(v) + 1)

2−p∞
2p∞ )θ(I(v) + 1)1/p∞ ,

where we used the interpolation L
3p∞

2p∞−1 (Ω) = [L2(Ω), L3p∞(Ω)]θ with θ = 2−p∞
3p∞−2 ,

1− θ = 4p∞−4
3p∞−2 . Consequently

2−p∞
2p∞

θ+ 1
p∞

= p∞+2
2(3p∞−2) . This proves the lemma. �
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This lemma, (2.54) and (2.51) imply

1 + I(vN ) 6 C
(
1 + J (vN )

2−p∞
2(3p∞−2) (I(vN ) + 1)

p∞+2
2(3p∞−2)

)
.

Thus by Young’s inequality, which is applicable for p∞ > 6
5 , we get

(2.56) I(vN ) 6 C
(
1 + J (vN )

2−p∞
5p∞−6

)
,

which raised to the power 5p∞−6
2−p∞

gives, in view of (2.51),

I(vN )
5p∞−6
2−p∞ 6 C

(
1 + J (vN )

)
6 C.

This and (2.51) implies that the following expressions are bounded independently

on N , for max
(
2, 9−3p∞

2

)
< q 6 3+p∞

2 ,

‖∂tvN‖2L∞(I′;L2(Ω)), ‖∇vN‖q
L∞(I′;Lq(Ω)),(2.57)

‖I(vN )‖
L

5p∞−6
2−p∞ (I′)

, ‖J (vN )‖L1(I′).

2.2. Passage to the limit
From (2.57) and Lemma 2.28 it follows that

‖vN‖
L

p∞ 5p∞−6
2−p∞ (I′;W 2,p∞ (Ω))

6 C,(2.58)

‖∂tvN‖L∞(I′;L2(Ω)) + ‖∂tvN‖
Lp∞(I′;W

1,
3p∞

p∞+1 (Ω))
6 C,(2.59)

since 〈vN , 1〉 = 0. Thus we can pick a subsequence (still denoted by vN ) with

vN ⇀ v in Lp∞
5p∞−6
2−p∞ (I ′;W 2,p∞(Ω)),(2.60)

∂tvN ⇀ ∂tv in L∞(I ′;L2(Ω)) ∩ Lp∞(I ′;W 1, 3p∞
p∞+1 (Ω)),(2.61)

where we have used the fact that the weak limit of distributions on I ×Ω is unique.
Since W 2,p(Ω) ↪→↪→ W 1,2(Ω) for p > 6

5 , the lemma of Aubin-Lions implies the

existence of a subsequence such that

(2.62) ∇vN → ∇v in L2(I ′ × Ω).

As a consequence we get convergence of the convective term

(2.63) [∇vN ]vN → [∇v]v in L1(I ′ × Ω).
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Observe that we have due to Lemma 2.19 (c) (with B = 0) and p(|E|2) 6 p0 6 2

‖S(DvN ,E)‖L2(I′×Ω) 6 C(E)‖(D̃vN )p(|E|2)−1‖L2(I′×Ω)(2.64)

6 C(1 + ‖∇vN‖L2(I′×Ω)) 6 C.

On the other hand by (2.62) DvN → Dv a.e. in I ′ × Ω, so

(2.65) S(DvN ,E) → S(Dv,E) a.e. in I ′ × Ω

due to the continuity properties of S. Now Vitali’s convergence theorem, (2.64) and
(2.65) imply

(2.66) S(DvN ,E) → S(Dv,E) in L1(I ′ × Ω).

Now we can easily pass to the limit in the Galerkin system (2.33). Indeed, choose ωr

and ϕ ∈ C∞0 (I ′), then we can conclude from (2.33), (2.61), (2.63), and (2.66) that

∫

I′
ϕ(〈∂tv,ωr〉+ 〈S(Dv,E),Dωr〉+ 〈[∇v]v,ωr〉) dt

=
∫

I′
ϕ(〈f ,ωr〉 − χE〈E⊗E,Dωr〉) dt.

Furthermore v fulfills

‖∂tv‖L2(I′×Ω) + ‖S(Dv,E)‖L1(I′×Ω) + ‖[∇v]v‖
L

4
3 (I′×Ω)

6 C.

Since {ω1,ω2, . . .} is dense in W s,2(Ω) ∩ Vp∞ and W
s,2(Ω) ↪→ W 1,∞(Ω) for s > 5

2 ,
we deduce that

∫

I′
ϕ(〈∂tv,ω〉+ 〈S(Dv,E),Dω〉 + 〈[∇v],v,ω〉) dt

=
∫

I′
ϕ(〈f ,ω〉 − χE〈E⊗E,Dω〉) dt

is fulfilled for all ω ∈W s,2(Ω) ∩ Vp∞ , especially for all ω ∈ V . Note that

〈∂tv,ω〉, 〈S(Dv,E),Dω〉, 〈[∇v]v,ω〉, 〈f ,ω〉, 〈E⊗E,Dω〉 ∈ L1(I ′)

and thus we obtain for all ω ∈ V and a.e. t ∈ I ′

(2.67) 〈∂tv,ω〉+ 〈S(Dv,E),Dω〉 + 〈[∇v]v,ω〉 = 〈f ,ω〉 − χE〈E⊗ E,Dω〉.
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It remains to show that v(0) = v0. The embedding W 1,2(I ′) ↪→ C
1
2 (I ′) and the

interpolation L∞(I ′) = [L2(I ′),W 1,2(I ′)] 1
2
imply

‖PNv0 − v(0)‖2 = ‖vN (0)− v(0)‖2(2.68)

6 C ‖vN − v‖
1
2
L2(I′;L2(Ω))︸ ︷︷ ︸
→0

‖∂tvN − ∂tv‖
1
2
L2(I′;L2(Ω))︸ ︷︷ ︸

6C

→ 0.

Since PNv0 → v0 in L2(Ω) we get v(0) = v0. Overall we have shown by (2.67)

and (2.68) that v satisfies (2.2) in the weak sense. It remains to prove the estimates
for v, I(v) and J (v). First of all, from (2.60) and (2.61) it follows that

(2.69) ‖∂tv‖L∞(I′;L2(Ω)) + ‖v‖
L

p∞ 5p∞−6
2−p∞ (I′;W 2,p∞ (Ω))

6 C.

The passage to the limit in the expressions ‖I(vN )‖
L

5p∞−6
2−p∞ (I′)

and ‖J (vN )‖L1(I′) is

possible, since due to (2.62), (2.58), (2.59) and the convexity of I and J in D(∇v)
and D(∂tv), respectively, we can use De Giorgi’s semicontinuity theorem (cf. [23],
p. 132) and a version of it (cf. [12]) to obtain

(2.70)
∫ T ′

0

I(t,v)
5p∞−6
2−p∞ + J (t,v) dt 6 C.

Moreover from this, (2.30) and Young’s inequality we get

(2.71)
∫ T ′

0

‖∂tv‖
p∞(5p∞−6)

(3p∞−2)(p∞−1)

1, 3p∞
p∞+1

dt 6 C

∫ T ′

0

I(t,v)
5p∞−6
2−p∞ + J (t,v) dt 6 C.

In order to obtain the estimate for ∂2
t v we differentiate (2.67) with respect to time

in the sense of distributions, which yields for all ω ∈ V and all ϕ ∈ C∞0 (I ′)
∫ T ′

0

〈∂2
t v,ω〉ϕ dt =

∫ T ′

0

−〈∂tS(Dv,E),Dω〉ϕ + 〈2v ⊗ ∂tv,Dω〉ϕ(2.72)

+ 〈∂tf ,ω〉ϕ− 2χE〈E⊗ ∂tE,Dω〉ϕ dt.

From (2.6), (2.7) and p(|E|2) 6 p0 6 2 we get

‖∂tS(Dv,E)‖22 6 C
(
1 + J (v) + ‖∇v|22 + ‖∇v‖33

)
,

which due to (2.69) and (2.70) belongs to L1(I ′). From (2.69) and the assumptions on
the data we easily see that also the other three terms on the right-hand side of (2.72)

belong to L1(I ′) if ω ∈ L2(I ′;V2). This implies ∂2
t v ∈ L2(I ′; (V2)∗). From (2.69),

(2.71) and the parabolic embedding (cf. [14]) we finally get v ∈ C(I ′;Vr), 1 6 r <

6(p∞ − 1). This finishes the proof of Theorem 2.13.
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3. Time discretization

Now we discuss a time discretization of the system (2.2) under the additional
assumption that

p = const.

and consequently we have to modify our basic assumptions on S. We assume that
the following monotonicity condition

(3.1)
∂Sij(D,E)

∂Dkl
BijBkl > γ1(1 + |E|2)(1 + |D|2) p−2

2 |B|2,

is satisfied for all B,D ∈ X := {D ∈ � 3×3
sym , trD = 0}, and that the following growth

conditions are satisfied for i, j, k, l, n = 1, 2, 3,

∣∣∣∂Sij(D,E)
∂Dkl

∣∣∣ 6 γ2(1 + |E|2)(1 + |D|2) p−2
2 ,(3.2)

∣∣∣∂Sij(D,E)
∂En

∣∣∣ 6 γ3|E|(1 + |E|2)(1 + |D|2) p−1
2 .(3.3)

For the numerical analysis we need some additional notation. Let Ik = {tm}M
m=0 be

a given net in an interval I = [0, tM ] with a constant time-step size k := tm − tm−1.

We denote by dtvm := k−1(vm −vm−1) the divided difference in time. By lq(Ik ;X)

we denote the space of functions {ϕm}M
m=0 with finite norm

(
k

M∑
m=0

‖ϕm‖q
X

)1/p

. For

q = ∞, functions {ϕm}M
m=0 need to satisfy the bound max

06m6M
‖ϕm‖X <∞.

The problem (2.2) is approximated by a time discretization by means of the implicit
Euler scheme:

Algorithm 3.4. Let there be given a time-step size k > 0 and the corresponding
net Ik = {tm}M

m=0. For m > 1 and vm−1 given from the previous step, compute an

iterate vm that solves

dtvm − div S(Dvm,E(tm)) + [∇vm]vm +∇πm(3.5)

= f(tm) + χE [∇E(tm)]E(tm),

div vm = 0,

v0 = v0,

endowed with space-periodic boundary conditions (2.6).

The main result of this section is:
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Theorem 3.6. Assume that the extra stress tensor S satisfies (3.1)–(3.3) and
S(0,E) = 0. Let v0 ∈ W 2,2(Ω) ∩ Vp be a given initial velocity, f ∈ C(I ;W 1,2(Ω)),
∂tf ∈ C(I ;L2(Ω)) be a given force, E ∈ C1(I ;C1(Ω)) be a given electric field. Let
v be a strong solution of the problem (2.2) on the interval I ′ = [0, T ′] for p ∈

[
5
3 , 2

]

satisfying (2.14) and (2.15). Suppose that vm is a weak solution of the problem (3.5)
satisfying (3.19) and tM 6 T ′. Then for all

(3.7) α < α0(p) :=
5p− 6

4(p− 1)

there exists a constant C that only depends on v0, f , Ω, T ′ and α but not on the
time-step size k, such that the following error estimate is valid, provided that the

time-step size is chosen sufficiently small, i.e. k 6 k0(p, T ′),

(3.8) max
16m6M

‖v(tm)− vm‖22 + k

M∑

m=1

‖D(v(tm)− vm)‖2p 6 Ck2α.

��������� �
3.9. With a more refined technique (cf. [13]) one can show that the

assertion of the theorem holds for p ∈
(

11+
√

21
10 , 2

]
≈ (1.5583, 2].

Before we start with the proof of Theorem 3.6 we need some additional properties

of quantities related to S. Due to (3.1)–(3.3) we get that I(t,v) and J (t,v) defined
in (2.9) and (2.10) satisfy the analogue of (2.22) and (2.23), i.e.

I(t,v) > γ1

∫

Ω

(D̃v(t))p−2|D(∇v)(t)‖2 dx,

J (t,v) > γ1

∫

Ω

(D̃v(t))p−2|D(∂tv)(t)|2 dx.

The discrete analogue for J (v) for a function defined on a net Ik reads as follows

K(vm) :=
∫

Ω

∫ 1

0

∂Sij(D(svm + (1− s)vm−1),E(tm))
∂Dkl

dsDij(dtvm)Dkl(dtvm) dx,

which due to (3.1) and Lemma 2.17 satisfies

(3.10) K(vm) > C3

∫

Ω

(1 + |Dvm|2 + |Dvm−1|2) p−2
2 |D(dtvm)|2 dx.

596



Lemma 3.11. Let S satisfy (3.1) and (3.2). Then for all (sufficiently smooth) v
with

∫
Ω v dx = 0, for all 1 6 q <∞, and almost every t ∈ I there holds:

‖∇v(t)‖2 6q
6−3p+q

+ ‖D(∇v)(t)‖2 2q
2−p+q

6 CI(t,v)‖D̃v(t)‖2−p
q ,(3.12)

‖∂tv(t)‖2 6q
6−3p+q

+ ‖D(∂tv)(t)‖2 2q
2−p+q

6 CJ (t,v)‖D̃v(t)‖2−p
q .(3.13)

!"� #$#&%
. Lemma 2.25

(
r 7→ 2q

2−p+q

)
and p = const. imply

‖D(∇v)‖ 2q
2−p+q

6 CI(v)
1
2 ‖(D̃v)

2−p
2 ‖ 2q

2−p

6 CI(v)
1
2 ‖D̃v‖

2−p
2

q ,

which together with the embedding W 2, 2q
2−p+q (Ω) ↪→ W 1, 6q

6−3p+q (Ω) proves the first
assertion. The second assertion follows analogously. �

Since K(vm) is the discrete version of J (v) we immediately obtain in the same
way as in Lemma 3.11 and Lemma 2.28:

Lemma 3.14. Let S satisfy (3.1) and (3.2). For all (sufficiently smooth) vm

with
∫
Ω vm dx = 0 there holds for all q ∈ [1,∞):

‖dtvm‖2 6q
6−3p+q

+ ‖D(dtvm)‖2 2q
2−p+q

(3.15)

6 CK(vm)(‖D̃vm‖q + ‖D̃vm−1‖q)2−p,

‖dtvm‖p
3p + ‖dt∇vm‖p

3p
p+1

6 C(1 + I(vm) + I(vm−1))
2−p
2 K(vm)p/2,(3.16)

6 C(1 + I(vm) + I(vm−1) +K(vm)).(3.17)

The following lemma ensures the solvability of the problem (3.5).

Lemma 3.18. Let S, v0, f and E satisfy the assumptions of Theorem 3.6. Then
there exists a weak solution vm of (3.5) satisfying

(3.19) max
16m6M

‖vm‖22 + k

M∑

m=1

‖Dvm‖p
p 6 C(f ,v0,E),

whenever p > 3
2 .
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!"� #$#&%
. First of all note that the strategy employed in the proof of Theorem 2.13

to ensure the existence of strong solutions is not applicable in the discrete case,
since there is no discrete version of the local Gronwall’s inequality. For p > 9

5 the
estimate (3.19) is sufficient to ensure the existence of weak solutions using the theory

of monotone operators (cf. [29]). For this we must view (3.5), with k and m fixed, as
a steady system with the discrete time derivative as the right-hand side. In order to

prove the lemma for p > 3
2 we proceed as follows (cf. [22], [41]). We approximate (3.5)

by the mollified system

dtvm
n − div S(Dvm

n ,E(tm)) + [∇vm](vm
n )1/n +∇πm

n(3.20)

= fn(tm) + χE [∇En(tm)]En(tm),

div vm
n = 0,

where (vm
n )1/n = w1/n ∗ vm

n is the usual mollification. Now we fix m and k and
move the discrete time derivative to the right-hand side and view (3.20) as a steady

system. Using the Galerkin method and the theory of monotone operators9 it is easy
to show that there exists a weak solution to (3.20) satisfying the estimate (3.19).

The key observation is that

[∇vm](vm
n )1/n is bounded in L

3p
6−p (Ω)

uniformly with respect to n. To take advantage of this property we must use L∞-test
functions which ensure the almost everywhere convergence of Dvm

n . This argument

is elaborated in detail in [41] and one can follow exactly the argumentation there.
As a result one obtains that Dvm

n converges a.e. in Ω to Dvm, which together with

Vitali’s convergence theorem enables the limiting process in the weak formulation
of (3.20). �

In order to verify Theorem 3.6 we have to deal with two problems. Namely that
the discrete solution vm of the problem (3.5) is only weak and secondly that the

information about ∂2
t v is also weak. Thus we introduce an auxiliary problem to

split these problems subsequently. We follow the procedure introduced in [37] and

consider the following auxiliary problem:

Algorithm 3.21. Suppose that v is a strong solution to the problem 2.2 with
the properties stated in Theorem 2.13. Then determine Vm, m = 1, . . . ,M , that

9Note that the mollified convective term maps the space Vp into W−1,p(Ω) for p > 3
2 .
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solves

dtVm − div S(DVm,E(tm)) + [∇Vm]v(tm) +∇Πm(3.22)

= f(tm) + χE [∇E(tm)]E(tm),

div Vm = 0,

V0 = v0,

endowed with space-periodic boundary conditions (2.12).

We have linearized the convective term with respect to the continuous solu-
tion v(tm), for which we have good regularity properties. The hope is that Vm

inherits the regularity from v. In fact this is the case at the expense of restricting
ourselves to a smaller range of p’s.

Proposition 3.23. Let S, v0, f and E satisfy the assumptions of Theorem 3.6.
Let v defined on I = [0, T ′] be the strong solution ensured by this theorem and let
tM < T ′. Then there exists a strong solution Vm of the problem (3.22) whenever
p ∈

[
5
3 , 2

]
. This solution satisfies

(3.24) max
16m6M

‖dtVm‖22 + k

M∑

m=1

(
I(Vm)

5p−6
2−p +K(Vm)

)
6 C(f ,v0,E).

In particular we have that for all 1 < r < 6(p− 1) it holds

Vm ∈ lp 5p−6
2−p

(
Ik;W 2, 3p

p+1 (Ω)
)
∩ l∞(Ik ;Vr),(3.25)

dtVm ∈ l
p(5p−6)

(3p−2)(p−1)
(
Ik ;W 1, 3p

p+1 (Ω)
)
∩ l∞(Ik;L2(Ω)).

!"� #$#&%
. The existence of a strong solutionVm of (3.22) follows from the regular-

ity in (3.25) using the Galerkin approach with eigenfunctions of the Stokes operator as

a basis. The regularity (3.25) follows in the same way as in the proof of Theorem 2.13
from (3.24) using also Lemma 3.14. Thus we shall only derive these estimates. For

all missing details in the following computations we refer to [30, Section 5.3].
First of all we test the weak formulation of (3.22), which reads for all ϕ ∈ Vp

〈dtVm,ϕ〉+ 〈S(DVm,E(tm)),Dϕ〉 + 〈[∇Vm]v(tm),ϕ〉(3.26)

= 〈f(tm),ϕ〉 − χE〈E(tm)⊗E(tm),Dϕ〉,

with Vm and sum up over all iteration steps to obtain the first a priori estimate

(3.27) max
16m6M

‖Vm‖22 + k

M∑

m=1

‖DVm‖p
p 6 C,

where we used that 〈[∇Vm]v(tm),Vm〉 = 0.
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The next step is to use in (3.26) −∆Vm as a test function. Again we use that

div v(tm) = 0 in the linearized convective term, the properties of S (cf. (3.1)–(3.3)),
the definition of I(Vm) and obtain, after summation up to level N ∈ {1, . . . ,M},

‖∇VN‖22 + k

N∑

m=1

I(Vm)(3.28)

6 C

(
1 + k

N∑

m=1

∫

Ω

|∇v(tm)| |∇Vm|2 dx

+ k
N∑

m=1

∫

Ω

∣∣∣∂Sij(DVm,E(tm))
∂En

∇En ·Dij(∇Vm)
∣∣∣ dx

)
.

The last term on the right-hand side can be bounded by (cf. (3.3))

(3.29) εk

N∑

m=1

I(Vm) + Ck

N∑

m=1

‖D̃Vm‖p
p,

where the first term is absorbed in the left-hand side of (3.28). The second term on
the right-hand side in (3.28) can, for 1 < r < 6(p− 1), α ∈ (0, 1), be estimated by

(3.30) ‖∇v(tm)‖r ‖∇Vm‖22r′ 6 C‖∇Vm‖22r′ = C‖∇Vm‖2(α+1−α)
2r′ ,

where r′ is the dual exponent to r and where we used v ∈ C(I ;Vr). Now, for p > 4
3

and 3p
3p−2 < r < 6(p−1) we interpolate L2r′(Ω) both between L2(Ω) and L3p(Ω) and

between Lp(Ω) and L3p(Ω), which gives

‖∇Vm‖2r′ 6 ‖∇Vm‖
r(3p−2)−3p

r(3p−2)
2 ‖∇Vm‖

3p
r(3p−2)
3p ,(3.31)

‖∇Vm‖2r′ 6 ‖∇Vm‖
1
4

r(3p−2)−3p
r

p ‖∇Vm‖
3
4

r(2−p)+p
r

3p .

Using also (2.29) the right-hand side of (3.30) can be estimated by

(3.32) C(1 + ‖∇Vm‖22)Q1 ‖∇Vm‖p Q2
p (1 + I(Vm))Q3 ,

where

Q1 = (1− α)
r(3p − 2)− 3p
r(3p− 2)

, Q2 = α
1
2p
r(3p− 2)− 3p

r
,

Q3 = (1− α)
2
p

3p
r(3p− 2)

+ α
3
2p
r(2− p) + p

r
.
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Young’s inequality together with the requirements

Q2 · δ =
1

1 + ε
, Q3 · δ′ = 1,

1
δ

+
1
δ′

= 1

for any prescribed ε > 0 yields

1 + ‖∇VN‖22 + k
N∑

m=1

I(Vm) 6 C

(
1 + k

N∑

m=1

‖∇Vm‖
p

1+ε
p (1 + ‖∇Vm‖22)λε(r)

)
,

where

λε(r) ↘ λ =
2(p− 1)(2− p)
3p2 − 5p+ 1

for ε↘ 0, r ↗ 6(p− 1).

In view of (3.27) we have to check whether λ < 1, which holds for p ∈
(

11+
√

21
10 , 2

]
.

Therefore we can employ discrete Gronwall’s lemma and obtain our second a priori

estimate

(3.33) max
16m6M

‖∇Vm‖22 + k

M∑

m=1

I(Vm) 6 C.

Now we want to use “d2
tV

m” as a test function in (3.26). This in fact will give us
the lower bound p > 5

3 . Firstly, we have to introduce V−1. For that we set for all

ϕ ∈ Vp

1
k
〈V0 −V−1,ϕ〉+ 〈S(DV0,E(0)),Dϕ〉+ 〈[∇V0]V0,ϕ〉

= 〈f(0),ϕ〉 − χE〈E(0)⊗E(0),Dϕ〉.

Using V0 = v0, p 6 2 and the assumption on v0 and E we obtain

‖dtV0‖22 6 C(‖f(0)‖22 + ‖[∇v0]v0‖22 + ‖divS(Dv0,E(0))‖22(3.34)

+ ‖E(0)⊗DE(0)‖2
2) 6 C.

Now we can take the discrete time derivative of the weak formulation (3.26), use

dtVm as a test function, and sum up to level N ∈ {1, . . . ,M}, to obtain

‖dtVN‖22(3.35)

+
1
k

N∑

m=1

∫

Ω

(S(DVm,E(tm))− S(DVm−1,E(tm−1)))D(Vm −Vm−1) dx

6 C

(
1 + k

N∑

m=1

∣∣∣∣
∫

Ω

[∇Vm]dtv(tm−1) · dtVm dx
∣∣∣∣
)
,
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where we used (3.34). From the formula dtv(tm) = k−1
∫ tm

tm−1
∂tv(s) ds and (2.15)2

we deduce

(3.36) ‖dtv(tm)‖2 6 ess sup
I

‖∂tv‖2 6 C,

and thus we can bound the last term in (3.35) by

‖dtv(tm−1)‖2 ‖ |∇vm| |dtVm| ‖2 6 C‖∇Vm‖4 ‖dtVm‖4(3.37)

6 εK(Vm) + CI(Vm),

where we used (3.15), (3.12) with q = 2, (3.33) and Young’s inequality. However we
have to check whether

12
8− 3p

> 4 ⇐⇒ p > 5
3
,

which is the lower bound from the proposition. Furthermore we have for the second
term on the left-hand side of (3.35)

k−1

∫

Ω

(S(DVm,E(tm))− S(DVm−1,E(tm−1))) ·D(Vm −Vm−1) dx

= k−1

∫

Ω

(S(DVm,E(tm))− S(DVm−1,E(tm))) ·D(Vm −Vm−1) dx

+ k−1

∫

Ω

(S(DVm−1,E(tm))− S(DVm−1,E(tm−1))) ·D(Vm −Vm−1) dx

= kK(Vm)

+ k

∫

Ω

∫ 1

0

Sij(DVm−1, (1− τ)E(tm−1) + τE(tm))
∂En

dτdtEn(tm)Dij(dtVm) dx.

The last term is moved to the right-hand side and there estimated by

(3.38) εkK(Vm) + Ck(‖D̃Vm‖p
p + ‖D̃Vm−1‖p

p),

where we used (3.3) and (3.10). Note that the last term is finite after summation

over m, due to (3.27). Alltogether, we have therefore derived our third a priori
estimate

(3.39) max
16m6M

‖dtVm‖22 + k

M∑

m=1

K(Vm) 6 C.
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Using −∆Vm as a test function in (3.26), where also the term with the discrete time

derivative is estimated, yields for p > 3
2 and

6
3p−2 < r < 6(p− 1) (cf. (3.28)–(3.30))

1 + I(Vm) 6 C
(
1 + εI(Vm) + ‖D̃Vm‖p

p + ‖∇Vm‖22r′(3.40)

+ ‖dtVm‖ 3p
2p−1

‖∇2Vm‖ 3p
p+1

)

6 C
(
1 + Cε‖∇Vm‖22 + εI(Vm)(1 + ‖D̃Vm‖2−p

2 )

+ ‖dtVm‖ 3p
2p−1

‖∇2Vm‖ 3p
p+1

)

6 C
(
Cε + εI(Vm) + ‖dtVm‖ 3p

2p−1
(1 + I(Vm))1/p

)
,

where we used Vm ∈ l∞(Ik ;W 1,2Ω) and p 6 2; the interpolation of L2r′(Ω) between
L2(Ω) and L

12
8−3p (Ω), which is possible for p > 3

2 , and (3.12) with q = 2; again
Vm ∈ l∞(Ik ;W 1,2(Ω)) and finally (2.29). For ε sufficiently small we can absorb the
term cεI(Vm) into the left-hand side of (3.40). Thus we get

(3.41) (1 + I(Vm))
p−1

p 6 C
(
1 + ‖dtVm‖ 3p

2p−1

)
.

Now we interpolate L
3p

2p−1 (Ω) between L2(Ω) and L3p(Ω), and use that dtVm ∈
l∞(Ik;L2(Ω)) and (3.16), to arrive at

(3.42) (1 + I(Vm))
p−1

p 6 C
(
1 +K(Vm)λ/2(1 + I(Vm) + I(Vm−1))λ 2−p

2p
)
,

with λ = 2−p
3p−2 . We raise this inequality to the power γ and apply Young’s inequality

to get

(1 + I(Vm))γ p−1
p(3.43)

6 C
(
1 +K(Vm)γ λ

2 (1 + I(Vm) + I(Vm−1))γλ 2−p
2p

)

6 C
(
1 + CεK(Vm) + ε(1 + I(Vm) + I(Vm−1))

2γ
2−γλ λ 2−p

2p
)
.

We now require γ p−1
p = 2γ

2−γλ λ
2−p
2p , which gives γ = p

p−1
5p−6
2−p . With this γ and

ε sufficiently small we can absorb the last term in (3.43) into the left-hand side after
summation over all time steps. Thus we have derived

(3.44) k
M∑

m=0

I(Vm)
5p−6
2−p 6 C

(
1 + k

M∑

m=0

K(Vm)
)

6 C.

The proof is complete. �
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Proposition 3.23 shows that the solution Vm of (3.22) has the same regularity

properties as the solution v of the problem (2.2). Thus we can split the error into
two parts, namely

(3.45) v(tm)− vm = (v(tm)−Vm) + (Vm − vm) =: ηm + em.

Before we discuss these errors we need one more property of S.

Lemma 3.46. Let S satisfy (3.1) and (3.2). Then for all (sufficiently smooth) v,
w, for all 1 6 r <∞, and almost every t ∈ I ′ there holds

‖D(v(t) −w(t))‖2
2r

2−p+r
6 C〈S(Dv(t),E(t)) − S(Dw(t),E(t)),D(v(t) −w(t))〉

× (1 + ‖Dv(t)‖r + ‖D(v(t)−w(t))‖r)2−p.

!"� #$#&%
. We have using Lemma 2.19

‖D(v −w)‖
2r

2−p+r
2r

2−p+r

=
∫

Ω

((1 + |Dv|+ |D(v −w)|)p−2|D(v −w)|2) r
2−p+r

× (1 + |Dv|+ |D(v −w)|)
(2−p)r
2−p+r dx

6
(∫

Ω

(S(Dv,E)− S(Dw,E)) ·D(v −w) dx
) r

2−p+r

×
(∫

Ω

(1 + |Dv| + |D(v −w)|)r dx
) 2−p

2−p+r

,

which immediately gives the assertion. �

Let us first discuss the error ηm, where we can take advantage of the regularity

properties for v and Vm. The error ηm is governed by the following system, which
holds for all ϕ ∈ Vp,

〈dtη
m,ϕ〉+ 〈S(Dv(tm),E(tm))− S(DVm,E(tm)),Dϕ〉(3.47)

+ 〈[∇ηm]v(tm),ϕ〉 = 〈Rm,ϕ〉,

supplemented with

(3.48) Rm := dtv(tm)− ∂tv(tm) = −1
k

∫ tm

tm−1

(s− tm−1)∂2
t v(s) ds.

From (3.48) and (2.15) we compute that

‖Rm‖22 6 C sup
s∈[tm−1,tm]

‖∂tv(s)‖22,(3.49)

‖Rm‖2(V2)∗ 6 Ck

∫ tm

tm−1

‖∂2
t v(s)‖2(V2)∗ ds.(3.50)
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If we use ηm as a test function in (3.47) and sum over all iteration steps, we obtain,

for 1 < r < 6(p− 1),

max
16m6M

‖ηm‖22 + k

M∑

m=1

(
‖Dηm‖2 2r

2−p+r
+ ‖Dηm‖2p

)
(3.51)

6 C(r)k
M∑

m=1

〈Rm,ηm〉,

where we have used Lemma 3.46 and v(tm),Vm ∈ l∞(Ik;Vr). We can bound
the term on the right-hand side with the help of the embedding W 1, 2r

2−p+r (Ω) ↪→
W

2r−6+3p
2r ,2(Ω) and the interpolation of W

2r−6+3p
2r ,2(Ω) between W 1,2(Ω) and L2(Ω)

as follows

〈Rm,ηm〉 6 ‖Rm‖1−
2r−6+3p

2r
2 ‖Rm‖

2r−6+3p
2r

(V2)∗
‖ηm‖V 2r

2−p+r

(3.52)

6 C(f ,v0)‖Rm‖
2r−6+3p

r

(V2)∗
+

1
2
‖Dηm‖2 2r

2−p+r
,

where we also used Korn’s and Young’s inequalities and (3.49). Now, we move the
last term in (3.52) to the left-hand side of (3.51) and it remains to bound the first

term in (3.52). Note that

(3.53)
2r − 6 + 3p

2r
=: α̃(p, r) ↗ α0(p) :=

5p− 6
4(p− 1)

, for r ↗ 6(p− 1).

From (3.50) and (2.15)3 we derive

k

M∑

m=1

‖Rm‖2α̃(p,r)
(V2)∗

6 Ck2α̃(p,r)

( M∑

m=1

∫ tm

tm−1

‖∂2
t v(s)‖2(V2)∗ ds

)α̃(p,r)

6 Ck2α̃(p,r),

which together with (3.51), (3.52) yields

(3.54) max
16m6M

‖ηm‖22 + k
M∑

m=1

‖Dηm‖2p 6 C(r)k2α̃(p,r),

with α̃(p, r) defined in (3.53).
We still have to deal with the error em, which is governed by the system

(3.55) 〈dtem,ϕ〉+ 〈S(DVm,E(tm))− S(Dvm,E(tm)),Dϕ〉 = 〈rm,ϕ〉,
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which holds for all ϕ ∈ Vp, and where

−rm = [∇Vm]v(tm)− [∇vm]vm(3.56)

= [∇Vm]ηm + [∇Vm]em + [∇em]vm.

If we use in (3.55) the test function em and sum over all iteration steps, we get

max
16m6M

‖em‖22 + k

M∑

m=1

‖Dem‖2p
C + ‖Dem‖2−p

p

(3.57)

6 Ck

M∑

m=1

∫

Ω

|ηm| |em| |∇Vm| dx+ Ck

M∑

m=1

∫

Ω

|em|2 |∇Vm| dx

=: Ck
M∑

m=1

(Im
1 + Im

2 ).

For the lower bound of the elliptic term we used Lemma 3.46 with r = p and the
uniform bound for ∇Vm ∈ l∞(Ik ;Lp(Ω)). With the help of Hölder’s inequality, the
interpolation inequality

‖v‖2r′ 6 ‖v‖1−λ
2 ‖∇v‖λ

p

with λ = 3p
r(5p−6) and ∇Vm ∈ l∞(Ik ;Lr(Ω)), 3p

5p−6 < r < 6(p− 1), we find that the
term Im

1 is bounded by

‖∇Vm‖r ‖em‖2r′‖ηm‖2r′(3.58)

6 C‖ηm‖1−λ
2 ‖∇ηm‖λ

p ‖em‖1−λ
2

‖Dem‖λ
p

(C + ‖Dem‖2−p
p )λ/2

(C + ‖Dem‖2−p
p )λ/2

6 C‖em‖2 ‖ηm‖2(C + ‖Dem‖2−p
p )

λ
2(1−λ) +

1
2‖Dem‖p

(C + ‖Dem‖2−p
p )1/2

‖Dηm‖p

6 C‖ηm‖22 + C(1 + ‖Dem‖p
p)

(2−p)λ
p(1−λ) ‖em‖22 + C‖Dηm‖2p +

1
2‖Dem‖2p

C + ‖Dem‖2−p
p

.

The last term on the right-hand side is absorbed into the left-hand side of (3.57).
For the first term and the third term in the last line of (3.58) we use estimate (3.54).
The term Im

2 is easier. We get

‖∇Vm‖r‖em‖22r′ 6 C‖em‖2(1−λ)
2

‖Dem‖2λ
p

(C + ‖Dem‖2−p
p )λ

(C + ‖Dem‖2−p
p )λ(3.59)

6 C(1 + ‖Dem‖p
p)

(2−p)λ
p(1−λ) ‖em‖22 +

1
2

‖Dem‖2p
C + ‖Dem‖2−p

p

.
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Thus we arrive at

max
16m6M

‖em‖22 + k

M∑

m=1

‖Dem‖2p
C + ‖Dem‖2−p

p

(3.60)

6 Ck2α̃(p,r) + k

M∑

m=1

(C + ‖Dem‖p
p)

2−p
p

λ
1−λ ‖em‖22

and we can use the discrete Gronwall’s lemma whenever 2−p
p

λ
1−λ < 1, where λ =

3p
r(5p−6) , 1 < r < 6(p−1). One easily computes that this requirement is equivalent to

p > 11+
√

21
10 . After the application of the discrete Gronwall’s lemma we obtain that

the left-hand side of (3.60) is bounded by Ck2α̃(p,r), with α̃(p, r) given by (3.53). We
can always choose r such that 2α̃(p, r) > 1 and we readily obtain that

max
16m6M

‖Dem‖2p 6 C

and in turn we derive

(3.61) max
16m6M

‖em‖22 + k

M∑

m=1

‖Dem‖2p 6 C(r)kα̃(p,r).

Since the same estimates hold for ηm we have furnished the proof of Theorem 3.6.
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