[2] G. Bourbon, P. Vacher, C. Lexcellent:
Comportement thermomécanique d’un alliage polycristallin à mémoire de forme Cu-Al-Ni. Phys. Stat. Sol. (A) 125 (1991), 179–190.
DOI 10.1002/pssa.2211250115
[3] M. Brokate, J. Sprekels:
Hysteresis and Phase Transitions. Springer-Verlag, New York, 1996.
MR 1411908
[4] Shape Memory Materials and their Applications. Vol. 394–395 of Materials Science Forum. Y. Y. Chu, L. C. Zhao (eds.), Trans Tech Publications, Switzerland, 2002.
[5] C. M. Dafermos, L. Hsiao:
Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity. Nonlinear Anal. 6 (1982), 434–454.
MR 0661710
[7] F. Falk:
Ginzburg-Landau theory of static domain walls in shape-memory alloys. Z. Physik B—Condensed Matter 51 (1983), 177–185.
DOI 10.1007/BF01308772
[8] F. Falk:
Pseudoelastic stress-strain curves of polycrystalline shape memory alloys calculated from single crystal data. Internat. J. Engrg. Sci. 27 (1989), 277–284.
DOI 10.1016/0020-7225(89)90115-8
[10] M. Frémond, S. Miyazaki: Shape Memory Alloys, CISM Courses and Lectures, Vol. 351. Springer-Verlag, , 1996.
[12] T. Jurke, O. Klein: Existence results for a phase-field model in one-dimensional thermo-visco-plasticity involving unbounded hysteresis operators. In preparation.
[13] O. Klein, P. Krejčí:
Outwards pointing hysteresis operators and and asymptotic behaviour of evolution equations. Nonlinear Anal. Real World Appl. 4 (2003), 755–785.
MR 1978561
[14] M. Krasnosel’skii, A. Pokrovskii:
Systems with Hysteresis. Springer-Verlag, Heidelberg, 1989; Russian edition: Nauka, Moscow, 1983.
MR 0742931
[15] P. Krejčí:
Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gakuto Internat. Ser. Math. Sci. Appl. Vol. 8, Gakkōtosho, Tokyo, 1996.
MR 2466538
[16] P. Krejčí, J. Sprekels:
On a system of nonlinear PDEs with temperature-dependent hysteresis in one-dimensional thermoplasticity. J. Math. Anal. Appl. 209 (1997), 25–46.
DOI 10.1006/jmaa.1997.5304 |
MR 1444509
[20] P. Krejčí, J. Sprekels:
Phase-field models with hysteresis. J. Math. Anal. Appl. 252 (2000), 198–219.
MR 1797852
[21] P. Krejčí, J. Sprekels:
Phase-field systems and vector hysteresis operators. In: Free Boundary Problems: Theory and Applications, II (Chiba, 1999), Gakkōtosho, Tokyo, 2000, pp. 295–310.
MR 1794360
[23] P. Krejčí, J. Sprekels:
Phase-field systems for multi-dimensional Prandtl-Ishlinskii operators with non-polyhedral characteristics. Math. Methods Appl. Sci. 25 (2002), 309–325.
DOI 10.1002/mma.288 |
MR 1875705
[24] P. Krejčí, J. Sprekels, and U. Stefanelli:
One-dimensional thermo-visco-plastic processes with hysteresis and phase transitions. Adv. Math. Sci. Appl. 13 (2003), 695–712.
MR 2029939
[25] P. Krejčí, J. Sprekels, and U. Stefanelli:
Phase-field models with hysteresis in one-dimensional thermoviscoplasticity. SIAM J. Math. Anal. 34 (2002), 409–434.
DOI 10.1137/S0036141001387604 |
MR 1951781
[26] P. Krejčí, J. Sprekels, and S. Zheng:
Existence and asymptotic behaviour in phase-field models with hysteresis. In: Lectures on Applied Mathematics (Munich, 1999), Springer, Berlin, 2000, pp. 77–88.
MR 1767764
[27] P. Krejčí, J. Sprekels, and S. Zheng:
Asymptotic behaviour for a phase-field system with hysteresis. J. Differential Equations 175 (2001), 88–107.
DOI 10.1006/jdeq.2001.3950 |
MR 1849225
[29] I. Müller: Grundzüge der Thermodynamik, 3. ed. Springer-Verlag, Berlin-New York, 2001.
[30] I. Müller, K. Wilmanski: A model for phase transition in pseudoelastic bodies. Il Nuovo Cimento 57B (1980), 283–318.
[31] Space Memory Materials, first paperback. K. Otsuka, C. Wayman (eds.), Cambridge University Press, Cambridge, 1999.
[32] R. L. Pego:
Phase transitions in onedimensional nonlinear viscoelasticity: Admissibility and stability. Arch. Ration. Mech. Anal. 97 (1987), 353–394.
DOI 10.1007/BF00280411 |
MR 0865845
[33] R. Racke, S. Zheng:
Global existence and asymptotic behavior in nonlinear thermoviscoelasticity. J. Differential Equations 134 (1997), 46–67.
DOI 10.1006/jdeq.1996.3216 |
MR 1429091
[35] J. Sprekels, S. Zheng, P. Zhu:
Asymptotic behavior of the solutions to a Landau-Ginzburg system with viscosity for martensitic phase transitions in shape memory alloys. SIAM J. Math. Anal. 29 (1998), 69–84 (electronic).
DOI 10.1137/S0036141096297698 |
MR 1617175
[37] A. Visintin:
Models of Phase Transitions. Progress in Nonlinear Differential Equations and Their Applications, Vol. 28. Birkhäuser-Verlag, Boston, 1996.
MR 1423808
[39] S. Zheng:
Nonlinear Parabolic Equations and Hyperbolic—Parabolic Coupled Systems. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 76. Longman, New York, 1995.
MR 1375458