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Abstract. The asymptotic behaviour for ¢ — oo of the solutions to a one-dimensional
model for thermo-visco-plastic behaviour is investigated in this paper. The model consists
of a coupled system of nonlinear partial differential equations, representing the equation
of motion, the balance of the internal energy, and a phase evolution equation, determining
the evolution of a phase variable. The phase evolution equation can be used to deal with
relaxation processes. Rate-independent hysteresis effects in the strain-stress law and also in
the phase evolution equation are described by using the mathematical theory of hysteresis
operators.
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plasticity, asymptotic behaviour
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1. INTRODUCTION

In this paper, an initial-boundary value problem for a system of partial differential
equations involving hysteresis operators is considered, and the asymptotic behaviour
of the solutions to this system is investigated. The system has been derived in [25]
to model one-dimensional thermo-visco-plastic developments connected with solid-
solid phase transitions taking also into account the hysteresis effects appearing on
the macroscopic scale as a consequence of effects on the micro- and/or mesoscale.

To model such developments, one is considering the evolution of several quantities:
the displacement u, the absolute temperature #, and a phase variable w, which is

* This work was supported by the Deutsche Forschungsgemeinschaft (DFG) by contract
SP 212/10-3.
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usually a so-called generalized freezing indez, see [21]. For a wire of unit length, the
evolution of these fields is determined by the following system:

(1.1) QUi — PUgzzt = 0z + f(z,1) a.e. in Qo

(1.2) 0 = Hi[ug, w] + 0Hz[uz,w] ae. in N,

(1.3) (CyO + Filuz, w)): — kbzp = pul, + ougs + g(z,t,0) ae.in Qo
(1.4) vwg = —1 a.e.in N,

(1.5) ¥ = Hslug, w] + OHs[uz, w] ae. in Qu,

(1.6) w(0,t) =0, pug(l,t)+o(1,t) =0, 6,(0,t) =0,(1,t) =0 a.e.in (0,00),
1.7 u(,0)=uo, u(-,0)=1wuy, 6(-,0) =86y, w(,0)=wo ae. in N,

with Q4 := Q X (0,00) and 2 := [0, 1].

The equation (1.1) is the equation of motion, (1.3) is the balance of internal
energy, and (1.4) is the phase evolution equation. By the constitutive law (1.2),
the elastoplastic stress o is determined, and the constitutive law (1.4) defines the
thermodynamic force 1. The boundary condition (1.6) means that the wire is fixed at
z = 0, stress-free at x = 1, and thermally insulated at both ends. Here, z denotes the
space variable, ¢ denotes the time, and the indices x and ¢t denote the differentiation
with respect to space and time, respectively.

The mass density p, the viscosity u, the specific heat Cy, the heat conductivity k,
and the kinetic relaxation coefficient v are supposed to be positive constants. The
initial data for the displacement, the velocity, the temperature, and the phase vari-
able considered in (1.7) are denoted by ug, u1, 6o, and wg, respectively. Finally, the
nonlinearities #;, 1 < ¢ < 4, and F; are hysteresis operators (see below), where one
needs to take into account u.(z, -)|jo,¢ and w(z, -)|[o, to compute H;[u.,w](z,t) and
Filuz, w)(z, t).

These operators are supposed to reflect some memory in the material on the
macroscale, resulting from effects in the micro/mesoscale. Such effects can lead to
hysteresis loops, as they are for example observed in the macroscopic strain-stress
relation (e-o, where € = u, is the linearized strain) determined from measurements
in uniaxial load-deformation of materials like shape memory alloys, see, e.g., [2], [4],
[6l, [71, (8], [9], [10], [30], [31], [38]. The curves show a strong dependence on the
temperature, but many of them are rate-independent, i.e., they are independent of
the speed with which they are traversed.

There are other approaches to model hysteretic behaviour by considering systems
similar to parts of (1.1)—(1.5), where the operators F; and #;, for 1 < i < 4, are
superposition operators. These models are derived by considering a free energy,
which is a superposition operator, involving a potential which has (one or more)
concave parts. The concave parts of the potential correspond to unstable physical
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states, and these instabilities are supposed to produce the observed hysteresis effects.
Such approaches have successfully been used and investigated in a number of papers,
see, e.g., [3], [5], [7], [9], [33], [37], [39] and the references therein, but the modelling
by non-convex free energies has its limits, since a non-convex part of the potential
alone does not ensure that hysteresis loops are present, see, e.g., [29]. Moreover, the
simple superposition operator cannot represent all the complicated hysteresis curves
that are observed in experiments.

Hence, to describe such structures, the more general hysteresis operators have
been introduced and used in a number of papers, see, e.g., the monographs [3], [14],
[15], [36] on this subject and the references therein. For a final time T > 0, an
operator H: C[0,T] — Map[0,T] := {v: [0,T] — R} is a hysteresis operator if it is
rate-independent and causal according to the following definitions. The operator H
is called rate-independent, if for every v € C[0,T] and every continuous increasing
(not necessarily strictly increasing) function a: [0,7] — [0,7] with «(0) = 0 and
a(T) =T it holds that H[v o a](t) = H[v](a(t)) for all ¢t € [0,T].

An operator H: D(H) (C Map|0,T]) — Map|0, T] is said to be causal, if for every
v1,v2 € D(H) and every t € [0,T] we have the implication

(1.8) v1(7) =va(1) V7 €0, = H[vi](t) = H[ve](?).

An example of a hysteresis operator is the stop operator, which is also called Prandtl’s
normalized elastic-perfectly plastic element. To define the stop operator, we consider
some yield limit 7 > 0, an initial stress 62 € [~r,7], and a final time T > 0. For
each input function € € W'1(0,T'), we have (see, e.g., [3], [14], [15], [36]) a unique
solution o, € W1:1(0,T') to the variational inequality

(1.9) or(t) € [-r,r] Vte[0,T], o.(0)=0?,
(1.10) (ee(t) —ort(®)(or(t) —m) 20 Vne€|[-r,r], ae in (0,7).

This defines the stop operator S,.: [—r,r] x W11(0,T) - WH1(0,T): (02,¢€) — o
An example for the evolution of the input and the output for the stop operator
is presented in Fig. 1, showing the input-output relation of S;[0,¢] for an input
function e which initially increases from 0 to 5, then decreases to —6, then increases
to 0, then decreases to —3, and finally increases to 6.

Connected with the stop operator S, is another important hysteresis operator, the
so-called play operator P, defined by

(1.11) Pp: [-r,r] x WH1(0,T) - WH(0,T): (02,€) = € — S, [02,€].

It is well-known, see, e.g., [3], [14], [15], that the stop and the play operator can be
extended to Lipschitz continuous operators on [—r,r] x C[0, T]. Moreover, using the
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Figure 1. An example for the evolution of (e(t),S2[0,¢](t)), starting in S = (0,0) and
finishing in F' = (6, 2).

notation of [3, Chapter 2.5], one has for all 62 € [—r, 7] that $52[0?, ] is the clockwise
admissible potential and rP,[0?, -] is the corresponding dissipation operator for the
operator S,[0?,], i.e., for all e € W11(0,T) it holds that

(1.12) (%Sf[af,e]) +|(rPr[02,€])| = Sr[02,€ler  ae. in (0,T).

Let Map[0,00) := {v: [0,00) = R}. An operator H: D(H) (C Map[0,00) x
Map[0, 0co) — Map|0, c0) is said to be causal, if for every (e1,w1), (€2, w2) € D(H)
and every t > 0 we have the implication

61(7’) = 82(7), wl('r) = 1U2(‘T) V1e [O,t] = ’H[el,wl](t) = H[EQ,’U)z](t).

Moreover, the operator H generates an operator H mapping (&, w) with e, w: Q x
[0,00) = R such that (e(z, ), w(z,-)) € D(H) for a.e. z € 2 to the function on 2 x
[0,00) defined by H[e, w](z,t) = Hle(z, ), w(z,-)](t) for all ¢ > 0 and for a.e. z € Q.
In the sequel, we will no longer distinguish between H and the generated operator H.
The hysteresis phenomena described by hysteresis operators are often related to
changes between different configurations within the wire. In the system above, these
configurations are described by the phase parameter w, and the evolution of these
configurations is described by the phase evolution equation (1.4). By considering such
an equation, one can take into account relaxation processes that appear in addition to
the rate independent hysteresis loops, which are modelled by the hysteresis operators.
Let us recall some results for systems with hysteresis operators similar to the one
above. In [11], [17], [20], [21], [23], [26], [27], a multi-dimensional phase transition
is considered without taking mechanical effects into account. This corresponds to
investigating (1.3)-(1.5) without a dependence on u or o. The one-dimensional
thermoelastoplastic hysteresis without considering relaxation processes in the phase
transition, i.e., (1.1)—(1.3) with no dependence on w, has been studied in [16], [18].
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For the complete system (1.1)—(1.7) above with an additional Ginzburg term uzzz.
on the left-hand side of (1.1) and boundary condition 4 = u;, = 0 on 99 for u, the
global existence and uniqueness of a solution has been shown in [24].

The system (1.1)—(1.7) has been derived and investigated in [25]. Therein, the
existence, uniqueness, and regularity of a strong solution has been proved (see Theo-
rem 3 in Section 2.3), and it has also been shown that the Clausius-Duhem inequality
and therefore the second principle of thermodynamics is satisfied for the solution.

In the present work, we are dealing with the asymptotic behaviour for ¢ — oo
of the system under consideration. After discussing the assumptions in Section 2.1,
the results are presented in Theorem 1 and Theorem 2 in Section 2.2. The a priori
estimates derived in Section 3 are used in Section 4 to prove these theorems.

2. ASYMPTOTIC BEHAVIOUR OF SOLUTIONS

2.1. Assumptions

The assumptions used in the investigation of the asymptotic behaviour of the
solution to (1.1)-(1.7) are now presented and discussed. Let C[0,00) denote the set
of all continuous functions from [0, 00) to R, including also the unbounded ones. For
t 2 0, the seminorm | - |o 4 on C[0, 00) and on C[0,T] for T > t is defined by

(2.1) |flio,y = max |f(s)]-

0<s<t

We will use the following assumptions:

(H1) We have ug € H%(Q), u; € WH°(9), 6p € H} (), wo € H* (), and there is
some & > 0 such that 6p(x) > 6 for all z € Q. Moreover, the compatibility condition
uo(0) = u1(0) = 0 is satisfied.

(H2) We assume that g: € x (0,00) x R = R is a Carathéodory function such that
there are functions g1, g2: Qs — [0, 00), with

9 € LI(QOO) n LZ(QOO)’ 92 € LI(O’ 003 LOO(Q)) n L2(0a oo;Loo(Q)’
'y(:E’t’s) - gl(xy t)I < gz(:z,t)s, g(x, L —8) = gl(l', t) V(.’L', t) € Qoo, $20.

(H3) The operators #,,...,Hs, F1: C[0,00) x C[0,00) = C[0,00) are causal and
map VV,:,: (0, 00) x VV,},’C1 (0, 00) into W.2'1(0, 00). The operators map Clo,T)xC[0,T)

loc

continuously into C[0, T] for all T > 0, and for all &,w € CJ[0, c0)

File,w](t) 20 Vt>o0.
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(H4) There exist causal operators Fo: W1 (0,00) x W,21(0,00) — W21(0, 00),

loc loc loc

Dy, Dy: Wik (0,00) x Wb (0,00) = LE_(0,00), G: W1 (0,00) = W21 (0,00), and

loc c loc

a non-decreasing function k; such that for all e,w € W,>: (0, 00)
i) |Dile, w]| = ecHale, w] + (Glw])eHs[e, w] — (File,w]): a.e.in (0, 00),
|Dafe, w]| = eHa[e, w] + (Gw]): Hae, w] — (Fale,w]): a.e.in (0, 00)
i) |(G[w]):(®) < ka1 (jwlpo,g)we(t)(Glw])e(t) for a.e. t € (0, 00).
(H5) We have Fy 9, F20 € L'(Q) such that for all e,w € W11 (0, 00; L2(R2)) with
e(+,0) = ug,; and w(-,0) = wp a.e. on Q it holds that

.7:1[6, 'U)](,O) = .7:1,0, .7:2[6,11)](',0) = .7:270 a.e. in (.

(H6) There are non-decreasing functions k2, k3, k4 : [0,00) — [0, 00) such that for all
g, w € C[0,0)

i) max [Hile, wl(®)] < ka(lelpo,g + wlo,) V>0,

ii) —Fle,w](t) < k3(leljo,g + lwlo,) (1 + Fafe,w](t)) VE>0.
i) If e,w € W11 (0, 00) then

loc

max |(Hile, w)):(t)] + |(File, w]):(?)|

1<i<4
< ka(lelfo, + [wlio,) (lee(t)] + Vwe(t) (Glw])e(t)) for ae. t € (0,00).

(H7) We have f € L>™(0,00; L?(f) and there exist functions fo, € L%(), F €
L2(0,00; H*(2) N H'(0, 00; L2(2) N L*=(N), and positive constants Ko, K; such
that
f— foo € L'(0,00; L%(Q), F(z,t) :/ f(€,t)d¢ for ae. (z,t) € Qoo
1
22)  oollLr@le®)] < (1 - Ko)|Fie,w](t)] + K1 Ve,w € C[0,00), ¢20.

For the formulation of the remaining assumptions, we use the following notations,
which are well defined by (H1):

(2.3) €0,min :=min{ug(z): = € Q},  €0max := max{uo(T): T € Q},

(2.4) Wo,min :=min{wp(z): = € 8},  Wo,max := max{wo(z): T € Q}.

(H8) For each ea > 0, there exists e_ < €0,min, €+ 2 €0,max» WA > 0, W_ < Wo,min,
and w4 > wo max such that for all e,w € C[0,00) and all ¢ > 0,
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i) Ife(t) 2 eg,

< €0,max> E_ —EA
(2.6) wo,min SW(0) < Wo,max, W- —wa

<e(r) Ley+ea V70,4,
< <wy+wa VTEE],

hold then we have
(2.7) Hile,w](t) > |FllL~n.), Hale, w](t) > 0.
i) If e(t) < e_, (2.5), and (2.6) hold then we have
(2.8) Hyle, w](t) < —||FllL=(0.), Hale,w](t) <O.
iii) If w(t) > wy, (2.5), and (2.6) hold then we have
(2.9) Hale,wl(t) 20, Hale,wl(t) > 0.
iv) If w(t) < w—, (2.5), and (2.6) hold then we have

(2.10) Hsle,w](t) <0, Hale,w](t) <0.

(H9) For every e,w € W,.} (0, 00) with & and w bounded and

/ " (1D1le, w](8)] + [Dale, w](8)]) dt < oo,

there exists £o, € R such that lim &(¢) = €.
t—oo

(H10) For every €,w as in (H9), there exists wo, € R such that tl_i'm w(t) = Woo-
(o o}

Before the asymptotic results will be presented in Section 2.2, the above assump-
tions are discussed, starting with considerations concerning relations to the physical
background.

Remark 2.1. Thanks to (H1), there is a positive lower bound for the initial
temperature and the lower bound for g in (H2) ensures that this function does not
model any further cooling at absolute zero. Considering the free energy F, the
entropy S, and the internal energy U as in [25], i.e.

Fle,w,0] := Cy0(1 — In(8)) + Fie, w] + 6 F;[e, w],
Sle,w, 8] := Cvl — Fle,w],
Ule,w, 0] := Cvb + Fi[e,w],
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the lower bound for F; in (H3) yields that the internal energy is nonnegative. More-
over, the nonnegativity of the expressions on the right-hand sides of the equations
in (H5)i) is combined with (H5)ii) to prove that the system (1.1)-(1.7) is thermo-
dynamically consistent, see [25, Remark 3]. The functions D; and D arising in (H4)
are related to the energy dissipation during a hysteresis loop.

Remark 2.2. There are cases where the operators H; are decoupled. For exam-
ple, the model for phase transition without mechanical effects as studied in [11], [17],
(20], [21], [23], [26] can be combined with the model considered in [16], [18], that is
the thermoelastoplastic hysteresis model without relaxation processes. In that case,
if one does not take into account any direct coupling between phase transitions and
mechanical effects, but only a coupling via the energy balance, one ends up with the
system (1.1)—(1.7) with #H; and #, depending only on u., and H3 and H4 depend-
ing only on w. Moreover, one is sometimes dealing with hysteresis operators arising
as the sum of a superposition operator and some well-known hysteresis operator.
Hence, we will investigate decoupled #; of this form. Considering causal operators
#Hi,...,Hs: C[0,00) = C[0,00) and nonnegative functions hy, ..., hs € C*(R), we
can deﬁne the operators Hi, ..., H4 by setting, for all €,w € C[0, oo) and all t > 0,

Ri(e(t)) + Hile] (¢ for i=1,2,
(2.11) Hile wl(t) = i(e(?)) ~[ 1(t) .
hi(w(t)) + Hi[w](t) for i =3,4.
For 1 < 7 < 4, we assume that we have a clockwise admissible potential and the

correspondmg dissipation operator for #;, i.e. (see [3, Chapter 2.5]), we assume that

we have a causal operator F;: C[0,00) — C[O 00) which is mapping W, loc 1(0,00) in
W.1(0,00) and a causal operator D;: W5 (0,00) — L1 (0, 00) with
(2.12) |D:v)| = veHi[v] — (Fi[v])e a.e.in (0,00), Yve€ WL0,00).

Then (H4) holds with G being the identity and F;, F2, Dy, D; defined by

(213)  File,w(t) := hi(et)) + FEl(t) + hir2(w(?)) + Firalw](?),
(214)  Djle,wl(®) = [Ds[el(®)] + [Dssaw)(®),

for all e,w € C[0,0), t > 0, and j € {1,2}.
If hy (r) = h}r? with some positive constant h} then the corresponding operator H;
models a linear elasticity with a hysteretic modification.

Remark 2.3. A sufficient condition for (H8) to be satisfied is that the two fol-
lowing assumptions (H11) and (H12) hold. These assumptions are especially useful,
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if the operators H,,...,Hs are decoupled as in the Remarks 2.2, 2.5-2.6. The no-
tation of an outward pointing operator used in these assumptions is introduced and
discussed in [13].

The more general formulation in (H8) is helpful, if the operators are coupled,
e.g., if they are derived from multi-dimensional stop or Prandtl-Ishlinskii operators
(see, e.g., [15], [21], [22], [23]).

(H11) For each eo > 0, there exists e < €o,min and €4 2> €o,max Such that
for all w € C[0,00) with womin < w(0) < Wo,max the operator mapping € €
C[0,00) to H;[e,w] € C[0,00) is pointing outwards with bound |F|| =) in the
ea-neighbourhood of [e—,e4] for initial values in (€9 min,€0,max] and that the same
holds for H; just with bound 0, that is to say for all € € C[0,00) and all ¢ > 0 holds:
i) If e(t) > €+ and (2.5) hold then we have (2.7).
ii) If e(t) < e— and (2.5) hold then we have (2.8).

(H12) There are wa > 0, w— < Womin, and w4 > Womax such that for all
€ € C[0,00) with €9 min < €(0) < €o,max the operators C[0,00) 3 w — Hzle,w]
and C[0,00) 3 w — Hyle,w] are pointing outwards with bound 0 in the wa-
neighbourhood of [w_, w4 ] for initial values in [wo,min, Wo,max), that is to say for all
w € C[0,00) and ¢ > 0 it holds that:

i) If w(t) > w4 and (2.6) hold then we have (2.9).

i) If w(t) < w— and (2.6) hold then we have (2.10).

Remark 2.4. If we use H3 = #H4 = 0 in Remark 2.2 then H5 and H4 are
superposition operators and the assumption (H12) holds if and only if there are
wa > 0, w_ < Wo,min, and Wy > Wo max Such that

e For all s € [wy, w4 +wa) holds h5(s) > 0, hi(s) > 0.

e For all s < [w_ —wa,w_] holds Aj(s) <0, hj(s) <0.

A similar condition has been used in [1], [32], [33]. If this condition is directly adapted
to hysteresis operators, one ends up with an assumption similar to (H12), but with
the condition (2.6) replaced by w_ —wa < w(t) < w4 +wa only. This assumption is
stronger than (H12) and will be denoted by (H12+). There are important hysteresis
operators satisfying (H12), but not (H12+).

In a similar way, one can consider a stronger version (H11+) of (H11), where
e- —ea < &(t) < et +é€a is used instead of (2.5).

Remark 2.5. If for the functions and operators in Remark 2.2 there are positive
constants K i,...,K24 such that

(2.15) |Hi[v](t)] < K2s Vt>0, veC[0,0), 1<i<4,
(2.16) + rkr:!l;loo h'l(f‘) > Ka1 + "F"L‘”(Qw)a
(2.17) irEI:II:loo h;(r) >Kpj; V2<j<4,
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then the assumptions (H11+) and (H12+) are satisfied. Hence, (H11), (H12), and
(H8) hold. Moreover, the condition (2.2) in (H7) is satisfied if the other assumptions
in (H7) hold.

Remark 2.6. For 1 < ¢ < 4, we consider a nonnegative weight function ¢; €
L'(0,00) and a function ¢? € W*°(0,00) such that ¢?(r) € [—r,r] for all r > 0,
[(69)-] <1 ae. on (0,00), and ¢2(r') = 0 for all ' > R; for some R; > 0. Moreover,
we consider yield limits r; ; € R, initial values 0 ; € [-7ij,7:,7], and weights p; ; > 0.
Now, we define #;: C[0,00) = C[0, 00) as the Prandtl-Ishlinskii operator

(218)  Hifv] == /oo @i(1)S,[0?(r), v] dr + Z ©i,iSr; ; [agj,v] Vv € C[0, 00).
0 j

The more general definition of this operator involing a Stieljes integral, see, e.g. [15],
would allow to write this sum as one integral. A clockwise admissible potential for
this operator is defined by F;: C[0,00) = C[0,00) with

" 1 [® o 1
(219)  Fbl=; /0 i (r)S2o(r), v dr + EJ: 0i3S2 005,0]

for all v € C[0,00) since Proposition 2.5.5 in [3] and (1.12) yield that (2.12) holds
for

(2.20) Dj[v] := ‘-(% /000 i (r)Pr[0?,v] dr

+3 00;1(PA[0?;,0]):]
i

for all v € W]tcl [0,00). Defining now H; and F; as in Remark 2.2, and using well-
known properties of the stop operator one can show that (H3)-(H6) hold.

Since for oscillations that are smaller then the yield limit of a play operator, the
operator stays constant after the first oscillation, we can apply (2.14) and (2.20) to
deduce that (H9) holds, if and only if for all s > 0 the function ¢; + 2 does not
vanish a.e. on [0,s]. For (H10), we get an analogous condition, just with ¢; + @2
replaced by @3 + 4. If one wants to ensure as in Remark 2.2 that (H11) and (H12)

are satisfied, one has to require that 2.15 holds, which is equivalent to the condition

(2.21) / ry;(r)dr + th,-,jri,j <Kz;<+o00o VILig4.
0 i

If this condition is satisfied, we see that (H11) and (H12) hold for appropriate func-
tions h;, but this argumentation can not be applied if #; = #; for some i € {1,...,4}.

In [13], it is proved that (H12) holds for Hj := Hz and H4 := #4, independently
of (2.21). Moreover, it is shown there that for H, := #; the condition in (H11)
holds if and only if f0°° ry1(r) dr = 00, and that an analogous equivalence holds for
7{2 = 7‘[2.
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2.2. The asymptotic result
The following two theorems are the main result of this paper:

Theorem 1. Assume that (H1)-(H8) are satisfied. Moreover, assume that
(u,8,w) is a solution to (1.1)~(1.7) such that

(2.22) u € HY,.(0,00; L()) N Hi,,o (0, 00; H(R)),
(2.23) 6 € Hy,.(0,00; L*(2)) N L, (0, 00; H*(R2)),
(2.24) w € H,(0,00; L?(2)) N Hyy,o (0, 00; H*(Q)),
(2.25) 6(z,t) >0 Ve, t>0.

Then, it holds that

(2.26) lim fuze( Dz =0, Jim fluel Ol = 0.
(2.27) o(-,t) = —Fo as t = 00, in L%(Q),

(2:28) Jim {10:(, )l L2y =0,  lim |I6(-,) — 0®)llo@) =0,
with

(229)  Fule) = [ fu(©d6 80)= [ 6@dy Vo t30
1 Q
In addition, we have a constant 6, > 0 such that

(2.30) O(z,t) >0, VreQ, t>0.

Remark 2.7. We see that (2.26) yields that for ¢ — oo the viscous part of the
stress tends to zero, and by (2.27) the stress tends to —F,, which is the potential
corresponding to the limit fo, for ¢ — oo of the applied force f. Moreover, by (2.28),
we see that the temperature becomes more and more uniform in space. It is an
open questions whether one can show convergence for 0, u., or w under the general
assumptions of the theorem or if oscillations can appear up to t — oco.

Also in [33], where the system (1.1)-(1.3) with #;, H2, and F; just being non-
linear superposition operators of u, has been considered, convergence for § and u,
could only been proved by using additional assumptions. Corresponding additional
conditions are required here in part b) and c) of Theorem 2 below, and allow to show
the convergence of the temperature for ¢ — co. If, in addition, #; and H4 are spe-
cial operators, like, e.g. stop operators, one could also show some convergence for u
and w, by adapting the argument in [33, Lemma 4.5] to the more general situation
considered here. '

319



Now, convergence results are presented that can be proved using additional hy-
potheses.

Theorem 2. Assume that the assumptions of Theorem 1 are satisfied.
a) If G is the identity operator, then we have

(2.31) Jim flw, (-, t)l[L2@) =0, lim ||9(, 8)l| L2) =0,
4

(2.32) Jm N(F1wz, w])e (- )l L2() = Jm |(Hifuz, w])e(-, )l L2(2) = O.
=1

b) IfHy=H3=F1=0,9g=0, and f =0, then we have

(2.33) 0(-,t)——>||00||L1(Q)+%;|Iullli(m ast— oo, in L®(Q),

(2.34) tl_i{{.lo ([Hz2[uz, w](-, )]l L2() = O.
c) IfHi=H3s=F1 =0,9g=0, f =0, and G is the identity operator, then we
have
(2.35) tlg{.lo [Haluz, w](-, t)ll2(0) = 0.

d) If (H9) holds then there exists a ue, € W1>() such that

(2.36) u(-,t) = Uoo a5 t = 00, weakly-star in W(Q),
(2.37) Ug(+,t) = Uoo,e ast— oo, a.e. in (.

e) If (H10) holds then there exists a wo, € L°°(2) such that

(2.38) w(,t) > we ast— oo, weakly-starin L>*() and a.e.in Q.

Remark 2.8. If (H8) does not hold then one can still prove the results in The-
orem 1 and some of the results in Theorem 2, if some other additional assumptions
are satisfied.

i) If (H4) and (H6) with ki, ..., ks replaced by positive constants hold then one

can still show the results in Theorem 1 and the results in Theorem 2 a)—) hold.
ii) If (H11), (H4)ii) with k; replaced by a positive constant, and (H6) without the
[wljo,¢-term in the evaluation of k3, k3, k4 hold then one can prove that the
results in Theorem 1 and the results in Theorem 2 a)—d) hold.
iii) If (H12) and (H6) without the |e|o,;-term in the evaluation of k2, k3, k4 hold
then one can prove the results in Theorem 1 and the results in Theorem 2 a)—c)
and e) hold.
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2.3. Existence of solutions

Before proving the asymptotic result, it will be recalled that there is a solution
to the problem under consideration satisfying the regularity and positivity demands
presented in Theorem 1, at least if some additional assumptions are satisfied. These
assumptions will be
(H13) f € H}_(0,00; L(2)).
(H14) The function g, arising in (H2) satisfies g1 € L{3.(Q) and for every T > 0
there is a positive constant K3 r such that |0g/d8]| < K3 a.e. in Q@ x (0,T) x R.

(H15) For every T > 0 there are positive constants K4 r,...,K7r and non-
decreasing functions ks 7, ke, : [0,00) = [0, 00) such that for all €,&,, €2, w, w1, w2 €
C[0,0) the following holds:

i) We have for all ¢t € [0,T):

|Hale, w](2)| + |Hale, w](2) 4T

| <K
Dax [Hiler, w1](2) — Hilez, wa](t)] < Ks,7(lex — €2lj0,4 + lw1 — w2]po,4)-

ii) Ife,e1,€2,w,w;,we € Wl 1(0, 00) then the inequality in (H4)ii) with k1 (lwljo,9)
replaced by Kg r holds for a.e. t € (0,7) and

oax, |(Hile, w])e(8)] < Kr,r(lee(t)] + [w:(2)]) for ae. t € (0,T),

(2.39) | F1le, w])e(t)| < ks, (lelfo,g + [wlio, ) (e ()] + [we(2)])
for a.e. t € (0,T),
(2.40) |F1[er, w1](2) — Filez, w2](2)
< ke, 7(le1ljo,g) + le2ljo,g + lwiljo,g + lw2l[o,4)

x (16100) = £20) + 2 (0) = w2 0)
t
+ [ err) = ea ) + hona(r) - waa(r)ar )
0
Vte[o,T).
One can extend Theorem 2.1 in [25] to the following result:

Theorem 3. Assume that (H1)-(H3), (H4)i), and (H13)-(H15) are valid. Then
the system (1.1)—(1.7) has a unique strong solution (u,0,w) such that (2.22)-(2.24)
hold. This solution also satisfies (2.25).

The original existence result in [25] has been formulated with a stronger version of
the assumption (H15), where ks r(- - -) in (2.39) and kg 7(: - -) in (2.40) are replaced
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by positive constants. Combining this stronger assumption with (H4)i) and the con-
tinuity of F; on C[0,T] x C[0,T] (see (H3)), it follows that #; and H3 have to be
uniformly bounded. However, uniform boundedness is not satisfied in many impor-
tant situations, e.g., if H,, defined as in (2.11), is modelling a linear elasticity with
a bounded hysteretic modification as in Remark 2.2. Using the assumption (H15)
allows to apply the existence result above also in this situation. In [24], the au-
thors of [25] consider a hypothesis analogous to (H15) for a modified version of the
system (1.1)—(1.7).

We now sketch the proof of Theorem 3: We observe that, in the global existence
proof in [25], the stronger versions of (2.39) and (2.40) are applied after the uniform
estimates for u, and w have been derived. To perform the a priori estimates, it
suffices to use just (2.39) and (2.40). Moreover, (2.39) and (2.40) also suffice for the
local existence result in [25, Section 3], as can be seen from a careful examination
of the proof. Details can be found in the forthcoming paper [12]. Therein, it is also
shown that one can replace the boundedness of Hs and H4, as assumed in (H15)1),
by the hypothesis for F» in (H6)i). One is then able to consider the case where one
assumes (H11) for H, consisting of Prandtl-Ishlinskii operators depending only on €.
In this case, H5 is unbounded, see Remark 2.6.

Remark 2.9. For nonnegative functions h;,...,hs € C%(R) with h},h} €
L>(R), hly, by € WH°(R), and operators H;, ..., H4 as in Remark 2.6 with nonneg-
ative weight functions ¢y, ..., ps € L*(0, 00) satisfying (2.21) one can use well-known
properties of the stop operator (see, e.g., [3], [14], [15], [36]) to show that (H15) holds.

3. UNIFORM A PRIORI ESTIMATES

In this section, it will be assumed that (H1)-(H8) are satisfied and that a solution
(u,8,w) to (1.1)—(1.7) is given, such that (2.22)—(2.25) hold. To prepare the proof of
the asymptotic results in the next section, some a priori estimates are derived that
are uniform with respect to time.

Before this is done, we consider the energy balance and derive an immediate
consequence:

Remark 3.1. Multiplying (1.1) by u; and adding the result to the balance
law (1.3) for the internal energy, we get the balance law for the energy

3.1) (Cv0 + guf + fl[uﬁ,w]) — K0z = (ut(puez +0))z + 9+ uf ae. in Neo.
t
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For t > 0, we integrate this equation over Q x (0,t), and use Green’s formula, (1.6),
(1.7), (H1), and (HS5), to show that '

(3.2) Cva(t) + §||ut(-, D22y = To+ () V>0
holds for the @ defined in (2.29),

(33) Io = Cullollx@ + Slurla + [ Fro@dz >0,

(3.4) L(t) = /()“/Q(g(x,T,O(z, 7)) + ue(z, 7) f(z, 7)) dz dr

—/(.Tl[uz,w](x,t))dx Vi>0.
Q

In the sequel, for 1 < p < 00, the notation || - ||, will be used as an abbreviation for
the L?()-norm, and ||-]| will denote the C(f2)-norm, i.e., the maximum norm on €.
Moreover, C;, for i € N, will always denote generic positive constants, independent
of time, space, and the considered solution.

Thanks to (2.22)—(2.25) and (H3), we can assume without losing generality that
o and 9 are continuous (maybe unbounded) functions on Qo = Q x [0,00), such
that (1.2) and (1.5) hold for all (z,t) € Q. Because of (1.7), (2.3), (2.4), we can
apply the assumption (H8) for (-) := u,(z,:) and w(-) := w(z, ). For the sake
of notatfonal convenience, we assume in the remaining part of this section without
losing génerality that p=u=Cy =k =v =1.

In the following estimates, some ideas from [25], [33], [35] are used.

Lemma 3.2. There are two positive constants Cy, Co such that

(3.5) ilil:(lW('yt)lll + llue(, O)ll2 + 1 F1 [uz, w](- D) < Ch,

(3.6) | gt t 66,0011 + ot 1,66, 0DIB) dt < G
Proof. Let

3.7 U(t) := /Q(}'l[um,w](z, t) — fo(z)u(z,t) + Ky)dz Vit > 0.
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Now, we get from (3.2) by using (2.29), (2.25), (3.3), (3.4), Holder’s inequality,
Young’s inequality, (H1), (H2), (H5), and (H7) that for all t > 0

(38)  (16C ) + 3l DI +2(0)
<Cot [ gDl + a1l b

1 t
43 [T = Falla +156,7) = Fola sl IR di.
0
By (3.7), Hélder’s inequality, (1.6), (H3), and (H7), we have
¥(t) > Kol Filus, w](- )l ¥t 0.

Hence, because of (3.8), we can apply Gronwall’s Lemma, (H2), and (H7) to show
that (3.5) and (3.6) are satisfied. O

To prepare the following estimates, we now consider the transformation due to
Andrews [1], which is also used, e.g., in [32], [33], [25], and introduce functions
P,4,5: Qoo — R that are defined by

(39) pla.t) = /1 w6 )de, qlat) = ua(e,8) —pla,t) Y (2t) € oo,
(3.10) o(z,t) := o(z,t) + F(z,t) VY (z,t) € Voo,

with F as in (H7). Recalling (1.1)—(1.7) and (H7), we see that

(3.11) Pt —Dee = ae. in Qeo,

(3.12) p(1,t) = p.(0,t) =0 a.e.in (0,7),
(3.13) p(z,0) = /1:B u1(§)dé ae.in Q,
(3.14) g =—6 ae.in(Q,

(3.15) q(z,0) = ug () — /1: uy(§)d€  a.e. in Q.

Lemma 3.3. There are positive constant C4, Cs such that
(3.16) %‘il:t’(”pz(‘vt”h + llp(+, )llo) < Cs,
(3.17) i‘ip(”u’-’E('at)"oo +llw (s Olloo + 1w, t)lloo + llg(-5 H)lleo) < Cs.
<t
Proof. Inthelight of the estimate for u, in (3.5) and the definition of p in (3.9),
we see that (3.16) holds. Considering (H8) for ea := 2C4 + 1, we get e_ < €0,min,
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€0,max < €+, W— < Wo,min, and W4 > Womax Such that the remaining conditions
in (H8) are satisfied. Now,

(3.18) uz(z,t) € [e— —2C4,e4 +2Cy), w(z,t) € [w_,wy] V(z,t) € Qoo

is proved by contradiction. Suppose that (3.18) does not hold. Then there is some
4 € (0,min{wa, 1}) such that u, < e_ —2C,; —§ and/or u; > €4 + 2C4 + 6 and/or
w < w_ — & and/or w > w4 + & somewhere in Qo,. We have u(z,0) = uo.(z) €
[e-,e4] and w(z,0) = wp(z) € [w_,w,] for all z € N because of (2.3) and (2.4).
Since (2.22) and (2.24) yield that w and u, are continuous on Q,, we get z; € ,
t1 > 0 such that

uz(z1,t) € {e- —2C4 — 8,64 +2C4 + 6
(3.19) { (z1,t1) € { 4 + 4+ 0}

and/or w(z1,t1) € {ws + 6, w_ — 8},
(3.20) €~ —2C4 — 6 < ug(z,t) <ey +2C4+8 Vte[0,t), T€Q,

(3.21) - —2Cs — 6 S ug(z,t1) ey +2C4+8 Vz e,
(3.22) w_ —§<w(z,t) <wy+8 VEe[0,t), z€Q,
(3.23) w_ -6 Sw(z, ) Swy+6 Ve

Hence, we see that (2.5) with € := u,(z,-) and (2.6) with w := w(z,-) hold for all
z € Q and t < ¢;, and it remains only to check the first condition in (H8)i)-iv) if one
wants to apply one the corresponding inequalities (2.7)—(2.10). Since u, and w are
uniformly continuous on  x [0,t,], there is some open neighborhood U C € of z;
such that

00| o

(3.24) luz(z,t) — uz(z1,8)] + Jw(z, t) —w(z1,t)| < o Vz €U, t' €[0,t].

Now, we consider the case u;(z1,%) = £+ + 2C4 + 4. Since u, is continuous on
Q x [0,t] and u,(z1,0) < €4, we get some to € (0,t;) such that

) 0
(3.25) e4+ 3= uz(z1,t0), &4+ 3 < ug(z1,t) <er +2C4+48 Ve (to,t1).

Combining this with (3.24), we conclude that u,(z,t) > e, forallz € U, t € (to,t1).
In the light of (2.7) in (H8)1), we see that

(3.26) [IFllLe(0.) < Haluz, w)(z,t), 0< Halus,w)(z,t) VzeU, te (to,tr)

Applying (1.2) and the fact that # > 0 on Q4 by (2.25), we observe that 0 > —F
a.e. in U X (to,t1). Thanks to (3.14) and (3.10), we deduce that ¢; < 0 a.e. in
U x (to,tl). This leads to
t1
/(q(z, t1) — q(z,t0))dzdr = // gt(z,t)dtdz < 0.
U UJtg
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On the other hand, using (3.9), (3.16), (3.24), (3.25), and u.(z1,t0) = €4 + 14, we
conclude that

/ (Q(z7 tl) - ‘I(xvtO)) dz 2 / (uz(xatl) - C4 - (uz(z,tO) + C4)) dz
U U

> /(u,(z’],tl) g (ux(wl,to)+ g) —204) dz
/ —dz > 0.

Hence, we have derived a contradiction. By an analogous argument, we get a con-
tradiction if uz(z1,t1) =e_ —2C4 — 4.

Now, we will deal with the case of w(z;,¢1) = wy + d. Applying the continuity
of w, we get some ¢y € (0,¢;) such that

é
= <’U)(Il,'1,t) <wy+d Vte (to,t1).

(3:27) w(zy,t0) = wy + é, 3

B w4 +
Combining this with (3.24), we see that w(z,t) > wy for all z € U, t € (to,t1)-
Therefore, we conclude from (2.9) in (H8)iii) that

(3.28) Hs[uz, w)(z,t) 20, Ha[uz,wl(z,t) 20 VzeU, te(to,t1).

Since 6 > 0 a.e. on Qo by (2.25), we deduce now from (1.5) and (1.4) that w, <0
a.e. in U x (to,t1). This leads to

/(thl —w(z,to)) dx—// we(z,t) dtdz <

Since w(z1,t1) = wy + 6, (3.27), and (3.24) yield that the integral on the left-hand
side has to be positive, we have derived a contradiction. An analogous argument to
get a contradiction can be used if w(z1,t) = w_ — 4.

Hence, we have derived a contradiction for all cases we have to consider by (3.19).
Therefore, we have proved (3.18). Recalling (1.6) and (3.9), we get also uniform
bounds for u and ¢, and (3.17) is proved. O

Remark 3.4. Because of (3.17), we have uniform bounds for v, and w. Thanks
to (H6), (3.5), (1.2), (1.5), and (1.4), we see that there are positive constants Cs,
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C7,...,Cq such that

(3.29) max, s Sup(ll'H [z, w](-,)]loo) <

(3.30) lo] + |we] < C7(1+6) ae. in R,
(3.31) sup/ (—=F2luz, w](z,t)) dz < Cs,

632 max (Halue, wl)el + |(Fafue,wl < Colfucel + v (GaD))

a.e. in Qy

Since (3.17) and (H4)ii) yield that 0 < w:(G[w]): < Crow? a.e. in N, we deduce
that

(3.33) Tnax, |(Hi[uz, w])e] + |(Filuz, w])e] € Cri(luze| + |we]) ae. in Qu.

We apply (H4)1), (1.2), (1.5), (1.4), and (H4)ii) to conclude that, a.e. on Q, it
holds that

(3.34) (F1luz, w))e — o(z, t)uze
= (G[w])tHs[uz, w] — |Di1uz, w]| — OH2[uz, wlugz:
= —|(G[w])ew:| — |D1[us, w]|
— O(Hz[uz, wluge + (Glw]) e Haluz, w]).

Lemma 3.5. We have a positive constant Cy2 such that
Uzt

(3.35) /0 w( - + % ) + || ld SIS t)" )dt

e
+ /0 ||D2[uz»w]( Bl dt + suplind(- 1)l < Cia

Proof. Testing (1.3) by —1/0 and using (1.6), (3.34), (H2), and (H4)i), we
observe that

6 e:c(zit) 2 uit(x1t)
~5 ), 6@ ”“”/((e(x,t)) M) )d“”
0 [(G[w])e(z, ywe(x, t)| + |D1[uz, w](z, t)I
< —ézf()fg[uz,w](z,t)dz—/n 8(z, 1)

+/(—|D2[uz,w](a:,t)| + |g2(z, t)|) dz
Q

Now, we integrate this equation over time and observe that (3.35) follows by apply-
ing (3.31), (H2), (H5), (3.5), and the inequality |Ins| < s — Ins for all s > 0, which
can be proved by elementary analysis. O
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Lemma 3.6. We have a positive constant Cy3 such that

(3.36) / " (laee DB + e DI + - DI + NG (- )12
+ 1 Fafuz, well? + | (VB)2 (-, D||) dt < Cus.

Proof. Since 6 > 0 a.e. on Q, we can apply Schwarz’s inequality and (3.5) to
show that for all ¢ > 0

(3.37) lae( )l = "\‘;;)%_?' VO, t)dz < Ca ’\‘}‘( t)

Recalling now (3.35) leads to the estimate for u,; in (3.36). Using that, by (1.6) and
(2:22), ue(y,t) = [ ust(z,t) dz for all y € Q, we get the estimate for u;. Combining
this estimate with (3.9) leads to the estimate for p.

Applying (3.32), (H4)1ii), (3.35), and Young’s inequality, we deduce that

(o, Jacen

“ (Fafuz, w])e
— ©

Considering now (3.37) with u,, replaced by (G[w]):, we get the estimate for (G[w]):
in (3.36), and the estimate for (Fj[u;,w]); is derived analogously. Thanks to
Schwarz’s inequality, we have

0.(z,t
VB0, = [ P o

lﬁ_;_l(.,t)H2||\/6(-,t)Ilz-

In the light of (3.5) and (3.35); we see that also the estimate for v/, in (3.36) is
established. O

Lemma 3.7. For 8 and I, as in (2.29) and (3.4) there are positive constant Cig,
Ci7, and Cig such that

(3.38) I1(t)] < Ci6, Ci17<B(t) <Cis Vit
(3.39) 16¢-,8) —8(®)lloo < N0=( 8l < 162(-,)ll2 V>0

Proof. Combining (3.4), (3.6), (1.7), (3.5), and Holder’s inequality, we see that

ILi(s)] < Co + | /Q (u(®, 5) — 40(2)) foo(z) da| + / NFC8) = Foo®llz e D)2 .
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Recalling (3.17), (3.5), (H7), and (H1), we get the uniform bound for I; in (3.38).
Since s —» —Ins is a convex function on (0,00), we get by (2.25) and Jensen’s
inequality that

—ln/ 0(z,t)dz < —/ In(@(z,t))dz Vt>0
Q Q
Invoking now (3.35), (2.29), and (3.5), we get (3.38). The first inequality in (3.39)
follows from the definition in (2.29), and the second by applying Schwarz’s inequality
and [,1dz = 1. O
Lemma 3.8. We have a positive constant Coq such that

oo d T AONY

g [0+ || + (L)) a
+ Sup(llut( t)lla + ||0( t)ll2) < Coo.

Proof. We test (3.1) by 6 + Ju? and (1.1) by au} where a > 0 will be fixed
later. Summing the resulting equations and using (1.6) and (3.4), we observe that
forallt >0

1 2 ad .
o galeengucn] ©10.608+ § miue o

+(1+ 3a)||u:( yE)ue (5 1)|13
<o) — aI‘ (t) + L(t) + Is(t) + I4(t),

with

(342)  L(t) = /9 (=(Fi[tes w])e(, 8) + 9(3, 1, 0(z, 1)) + ua(z, £) f (3, 2))
x (0(z,t) — 0(t)) dz,
- / (%(]:1 [uz, w])eu? + 20, usui, + uc0b,
Q

(343) ILi(t):
+(1+ 3a)ufut,a) dz,

(344)  Ii(t):

/ (g+(1+ 2a)utf)lu§’ dz.
Q 2

In the sequel, the generic constants C; will be independent of a. We estimate the left-
hand side of (3.42) by using Hélder’s inequality, (H7), (3.39), and Young’s inequality,
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resulting in

(345) 1(9) < (1Fafte, D ) + 91,8, D)l + e, Dlleall - 2)1)
x 16,6) ~ B0l
< Cor(I(Fi e, w)eC O + g 6,00, ENIE + e, I
+ 500,013

Invoking (3.43), (3.33), (3.30), Holder’s inequality, and Young’s inequality, we deduce
that

(3:46) I3(t) < Coa((1 + )lluea (-, t)ui (-, )l + lluf (Ol + Nl (-, )8, )]I1)
+ 2010z (-, D)ue (-, uea (-5 )11 + Cosllue (-, 8)02 (-, )]l
+ Caallfz (-, t)ue (5 )0(, )1 + (1 + @)Cos [l (-, t)uez (-, )O(-, ) I
< Cosllue(-, ez (-, )13 + Cor (1 + @) [l (-, 1) |13

1
+ Cos(1+ &®)ue( OIS NOC, Iz + 51102, I3

Using (3.44), (H2), Holder’s inequality, (3.5), (H7), (3.39), (3.38), and Young’s in-
equality, we conclude that

(347)  2000) < lor (Dol Ol Ollo
+ (B(6) +118C,2) — B )92, O ol D3
+ (U4 20l DL€ ) el )1
< 1021 + Casllan (1B + gz (Do + g2, 1)
+ Cso(1 + a®)lue (-, )13

Because of (3.2) and Young’s inequality, we have

oI (t) <1 oI (t) +

L0 1 1/8L(t) Y
ot Sth—p,; 56_t(11(t))2+Z"“t("t)"g-’-—( 1( ))

(3.48) a(t) i\ 75

From (3.4), we get by using Holder’s inequality, Young’s inequality, (H7), and (H2)
that

2
49) (5] < ConllaC,t. 06, ODIE + el O + 1 e, we D).
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Now, we integrate the sum of (3.41) and (3.49) over time, and use (1.7), (H1),
(3.45)—(3.49), (3.6), (H2), (3.5), (3.36), (3.38), and 6 > 0 a.e. on {2 to show that

216G, )13+ s, 9l
+/o (%Me,(-,t)ué + (14 3e)llue(, e (L DIE + (agt(t)) ) v
< Cx (1 +a?t [ (el Ouea, OB + (1 + @)l ITOC t>"5)d’)
0

holds for all s > 0. Next, we define a := Cs2, apply Gronwall’s Lemma, and
recall (3.36) to show that (3.40) is satisfied. O

Lemma 3.9. There are positive constants Cs3, C34 such that

(3-50) /Ooo(lluu(-, I3 + I(Glw))e(, )we (-, )l + I Drfus, w](-, 8)ll1) dt < Css,
(3.51) /Om(llpu(-,t)llg 1@+ @) OlF + llue(, 112 + I(Frluz, w3

+ ) I (Hifuz, w))eC, )15 + I(Glw))e (-, )I3) dt < Ca.

i=1

Proof. Integrating (1.3) over €2, and applying (1.6), (2.29), (3.34), and (H4)ii),
we derive
2 98(t)
lluze(, t)ll2 < == + llg(, 1,6, )l = 1 (GLw)e (-, ywe (-, )llr = IDrfua, w](-, )l

- / 0z, £) — B(8)) (Haluz, w](z, uae(w, ) + (Glw]): (@, t)Ha[uw, w](z, 8)) dz

-0 t) /.Tz[uz,w](:v t)dz.

We multiply this inequality by 1/8(¢) and use (3.29), Hélder’s inequality, and Young’s
inequality to prove

=—(lluse (. Ol13 + NGl (-, ywe C, Olls + Drluz, w] (-, 1))

0(t)
RGN 5%,,9(.,“,( h-2 / Foluz,w)(z,t) dz
C35

g(t)(llo( 1) = 013 + lluze(, )11 + 1(GLw): (-, OIIT).-

Integrating this inequality over time, and using (3.6), (3.38), (3.39), (3.36), and

(3.40), we observe that (3.50) is proved. The estimates in (3.51) follow by apply-
ing (3.9), (1.6), (3.32), (H4), and (3.17). O
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Lemma 3.10. There is a positive constant Csg such that

(3.52) /0 U5 C, IR + Ipe TR dr < Ce.

Proof. Let J(z,t): Qs — R be defined by
(3.53) J(z,t) :=6(z,t) + Haluz, w](z,t) (ﬁ(t) —O(z,t) + %”Ug(', t)|2
+ [l - ) dE) nein 2

Using (3.11) two times, we get

(6(z,1))? = pi(x, )6 (x, t) — peo(z, t)(z,t)
= pt(zv t)J(.’l:, t) + (6(1"1 t) + P2z (IL‘, t))(&(.’lﬁ, t) - J(.’L‘, t))
— Pzz(z, ) (z, t).

Integrating this equation over (2, and using Young’s inequality, (3.53), (3.29), and
(3-39), we observe that

659 160 < 5 / p(z,1)J(2,t)dz = / plast) g

+ Car(llpz=(, O3 + 18:(, E)ll2 + llue(-, )13
+HIFC 1) = foo (DI

Applying (3.53), (3.10), (1.2), (H7), and (3.2), we observe that
(3.55) J(z,t) = Hi[uz, w](z,t) + Ha[uz, w](z,t) (L1 () + Lo) + /1: foo(€) dE.

Hence, using (3.29), (3.38), (H7), Holder’s inequality, Young’s inequality, (3.36),
(3.51), and (3.40), we get uniform bounds for J and, for all s > 0,

- /0 /Q p(x,t)a-]((;,t) dedt < /OS(HP('J)"; HaJ(

Integrating now (3.54) with respect to time and using (3.16), (3.51), (3.40), (3.5),
(3.36), and (H7), we have shown the estimate for & in (3.52). Combining this estimate
with (3.11) and (3.51), we get the estimate for p;. a

) dt < Css.
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Lemma 3.11. Let ¢ € L2 _(0,00; H2(R2)) N HL (0, 00; L?(£2)) be the solution to

the parabolic initial-boundary value problem

loc

(3.56) (t — (e =6¢  ae. in Noo,
(3.57) G(0,8) =¢(1,) =0 V¢>0, ¢(-0)=0.

Then we have a positive constant Csg such that, for all t > 0
t 3/4
58) GO < Con 1+ guax loC,IEL + [ to,miBar) ).

Proof. Multiplying (3.56) by (, integrating over  x (0,T), performing partial
integrations, and using (3.57), we get for all t > 0

659  ICOB+ [ 1GEBr

= /ot/Q&t(x,’r)((z,T)dzd‘r

= /flé(z,t)C(a:,t) dz—/nt/nc'r(x,r)(t(a:,‘r) dzdr.

Because of (3.10), (3.30), (3.40), and (H7), we have a uniform upper bound for
16(-,t)|l2- Hence, we get from (3.59) by applying Holder’s inequality, Young’s in-
equality, and (3.52) that

t t 1/2
@0) IO+ [ el dr < Coo( [ aCnIBar)

Formally, we test (3.56) with (;, use (3.57), integrate over time, and apply Young’s
inequality to deduce that

(3.61) / 16 PIB dr + [1G (, )I < / 1G o) 2 dr + / l2(, )| dr.

For a rigorous derivation of this inequality, one has to consider (3.56) with &; replaced
by some smooth approximation, perform this computation for the corresponding
solutions, and consider afterwards the limit.

Inserting (3.60) into the left-hand side of (3.61) and using (3.10), (1.2), (3.36),
Holder’s inequality, Young’s inequality, (3.29), (3.51), (H6), and (H7), we observe
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that

662 g IO + 16,0l

1 t
<5 [ N0z, ul + Oalue 0] + ), o
0
t
< Car +Cua o 100 )l +Cia [ 1,71 .

Thanks to the Gagliardo-Nirenberg inequality (see below) and Young’s inequality,
we conclude that

(CaallCa G, DI 2NCC O + CasliCC 1) ]12)2

NG BI1% <
< Cas (1 + G G OI? + 1 B 11D).-

Now, we apply (3.62) and Young’s inequality to prove that (3.58) holds. a

The following version of the Gagliardo-Nirenberg inequality is a special case, more
general formulations can be found, e.g., in [3], [39)].

Lemma 3.12 (Gagliardo-Nirenberg inequality). For all p > 1 there are positive
constants C47, C4g such that

(3.63) vlleo < Carllvally’ P2 IolB/ D) 4 Cuglloll, Vv € HY(R).
Lemma 3.13. There is a positive constant Cy9 such that
t 3/4
368 .0l < Cuo(1+ max 1060l + ([ 10 igar) ).

Proof. Let z1,22: Qo — R be the solutions to the parabolic initial-boundary
value problems

(3.65) Zit — Zigz =0 ae. in Qn Vie {1,2},
(3.66) zi(1,t) = 2;,z(0,t) =0 forae. t>0 Vie{1,2},
(3.67) 21(2,0) = uy £(z,0), 22(z,0) =46(z,0) a.e. in Q.

Let z3: Qo — R be defined by

(3.68) z3(z,t) = /IZ/: z1(€,t) d€dy +/(; (z2(z,7) + {(z,7))dT V(z,1) € Qo
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Recalling (3.65), (3.66), (3.67), (3.56), (3.57), and (H1), we observe that
(3.69) z3r=21+22+C( 23zz=21+22+(—06 ae in Qu,
23(1,t) =0 =23 ,(0,t) forae. t>0, =z3(z,0)= / u1(§)dé Ve
1
Hence, we see that z3 is a solution to the linear parabolic initial-boundary value

problem considered in (3.11)-(3.13). Since p is the unique solution to this problem,
we have p = 23 a.e. on Q. Therefore, recalling u,: = p,. and (3.69), we have

(3.70) Ugt = 232z =21+ 22+ (— 0 ae in Q.

Using (3.67), (H1), (3.10), (1.2), (1.6), (H6), and (H7), we get uniform bounds
for z1(-,0) and 22(-,0). Applying the maximum principle for linear parabolic equa-
tions, we get uniform bounds for z; and 2. Because of (3.10), (H7), and (3.30), we
have

0 < Cs50+C510 ae in Q.

Thus, applying (3.70), (3.58), and Young’s inequality yields that (3.64) holds. O

Lemma 3.14. There is a positive constant Css such that

t
(3.71) sup [10:(,7)ll2 + / 16.( 713 dr < Csa.
o<r<t 0

Proof. Testing (1.3) by 6, using (1.6), (H2), Young’s inequality, Holder’s
inequality, and (3.30), we see that

(3.72) 18I + 55162, O3

< 2o + 0une(8) = (Filua, e 2) + 9,0, DI
< Csallae(, OB (luaeC D2, + 1+ 160G, 1)

+ Csa(Filuia, e, DI + Crsllga (- )13

+ CallgaC B¢ B2

Integrating this equation over time, using (1.7), (H1), (H2), Hélder’s inequality,
(3.50), (3.51), and (3.64), we see that

(3.73) /0 18:(-, )3 dt + 18-, s)II3

< Cs7 + Csg mmax (lluse( )15 + 160 )IZ)

s 3
< Cso + Coo ( / 16, I dt) + Co1 max [I6(,)|1%.
0 o<tss
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Thanks to the Gagliardo Nirenberg inequality and (3.5), we have
18, O)lloo < Co2ll6a (-, O3 * 118, )11 + Ceall6(-, )]s < Cea + Ces10=(- )12

Using this inequality to estimate the right-hand side of (3.73), and applying Young’s
inequality afterwards, we see that (3.71) holds. (]

Lemma 3.15. There are positive constants Cgg, Ce7 such that

B74)  SupI0C, D + ot o + o Dl + (- o) < Cii,
(3.75) /0 " Nlo OB + e 1B + 15e(- HI12) dt < Cr,

(3.76) /Ow(IDI [uz(z, ), w(z, ()] + |D2fuz(z, -), w(z, )] (t)]) dt < oo

for a.e. T € f.

Proof. Using (3.39) and (3.71), we get the estimate for 6 in (3.75) and ap-
plying in addition (3.64) and (3.30) leads to the remaining estimates in (3.74). In-
voking (1.2), (1.5), (3.51), (3.74), (3.71), and (3.29), we get the estimates for o; and
¥;. Utilizing also (3.10), (H7), and (3.36), we derive the estimates for ;. Combin-
ing (3.35) and (3.50) and using Fubini’s theorem, we see that (3.76) holds. O

4. PROOF OF THE ASYMPTOTIC RESULTS

As in the preceding section, it will be assumed that (H1)-(H8) are satisfied, and
that a solution (u,8,w) to (1,1)-(1.7) is given, such that (2.22)—(2.25) holds.

For proving the asymptotic results in Theorem 1 and in Theorem 2 with an argu-
mentation similar to [33, Section 4], the following modification of [34, Lemma 3.1]
will be used. In the original formulation, it was assumed that the inequality in (4.1)
holds for all ¢ in the interval considered, but the proof in [34] can also be used if this
inequality holds only for a.e. ¢ in the interval considered.

Lemma 4.1. Suppose that y and h are nonnegative functions on (0, 00), with y’
locally integrable, such that there are positive constants Ai, ..., A satisfying

(4.1) y'(t) < A1y®(t) + As + h(t) for a.e. t € (0,00),
(42) /(; y(t) dt g A3, /0 h(t) dt g A4.

Then we have lim y(t) = 0.
t—oo
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Lemma 4.2. We have (2.27) and

(43) Jim [lpe (-, Hll2 = Jlim [luc(, 9l =0,
(4.4 Jim [l6(, &)l = Jim Jlall2 = .

Proof. Testing (3.11) with —p,., applying (3.12) and Young’s inequality, we
see that

10

1 1.
557 1P= (o3 + l1p22 (5 DIE < 5llpaa - OIE + 516, I3 for ae. t € (0,00).

Since u; = p; a.e. in Q, we see by recalling (3.36) and (3.52) that we can apply
Lemma 4.1 to show that (4.3) holds. We have, by Young’s inequality,

7] - - ~ ~
5 10¢: 0l = 2/90(9:,t)0t(z, t)dz < [|5(, )7 + 15:(, )l for ae. t € (0,00).

Invoking (3.52), (3.75), and Lemma 4.1, we get the convergence result for & in (4.4).
Since (3.14), (3.10), and (H7) yield that ¢; = —&, we also have the result for g;
in (4.4). Combining (4.4), (3.10), (H7), and the definition on F in (2.29), we
get (2.27). O

Lemma 4.3. We have

(45) Jim llpe(8)ll2 = Jim [pee(8)llo = Him fuge(:, &)l = Jim Jfue(:,8)loo = .

Proof. Differentiating (3.11) with respect to ¢, testing it afterwards by p;, and
applying (3.11) and Young’s inequality, we see that

0 1 1, .
19 1B + [P DIE < S lpeC, O + 515, DIF  for ae. t € (0,00)

Using (3.52), (3.75), and Lemma 4.1, we get the convergence result for p; in (4.5).
By (3.11), we can combine this with (4.4) to prove the convergence result for p;,
in (4.5). Recalling also (3.9), we get the convergence result for u,; and using (1.6),
we obtain the result for u;. O
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Lemma 4.4. We have
(46) Jim [62(,0)l = Jim |6, 2) ~ B(2)lloo = 0.

Moreover, we have some constant 6, > 0 such that (2.30) holds.

Proof. Combining (3.72) with (3.74), we get for a.e. t € (0, o)

%II%(-J)H% < Cos(lluae (5 ) + 1 (Frlua, De( OIF + lgr (5 I3 + llgz (-, £)II3)-

N | =

Because of (3.40), (3.50), (3.51), and (H2), we can now use Lemma 4.1 to get the
convergence result for 6,. Recalling (3.39), we obtain the result for § —8. Combining
this with (3.38), we get some ¢y > 0 such that

0(m,t)>%Cl7 Yz e, t>t.

Moreover, (2.23) and (2.25) yield that 6 is continuous and positive on 2 x [0, ¢o],
and therefore also bounded from below by a positive constant C’ on this set. Setting
6, := min(1Cy7,C"), we see that (2.30) holds. O

This completes the proof of Theorem 1.
Now, the additional convergence results in Theorem 2 will be proved.

Lemma 4.5. If G is the identity operator, then we have (2.32) and

(47) Jim Jlwe(,8)ll2 = Jim [, 2)]l2 = 0.

Proof. Testing the time derivative of (1.4) by w, and using Young’s inequality,
we see that for a.e. t € (0,00)

S0 01 < [ (e (e, ) d < w01 + 3l 01

By assumption, we have w; = (G[w]):, and can therefore apply (3.51), (3.75),
Lemma 4.1, and (1.4) to show that (4.7) holds. Using now (H6)iii) and (4.5), we get
also (2.32). O

338



Lemma 4.6. Assume that H; = Hz = F, =0,9g =0, and f = 0. Then, we
have

(4.8) 0(-t) = |10l + ——llw1||2 as t = oo, in Lo(Q)
20y

and (2.34). If G is the identity operator then we have (2.35).

Proof. Thanks to the assumptions, (3.4), (3.10), (1.2), (H7), and (H5), we
see that I; = 0, that I/Cy is equal to the right-hand side of (4.8), and that ¢ =
0H2[u,, w]. Invoking (3.2), (4.5), (4.6), (4.4), and (H1), we get (4.8) and (2.34). If
G is the identity operator then it follows from (4.7), ¥ = 6H4[uz, w], and (4.8) that
(2.35) holds. O

Lemma 4.7. If (H9) holds then there is a uo, € W1>°(Q) such that (2.36)—(2.37)
hold.

Proof. Owing to (3.76) and (H9), we have a function €4: 2 — R such that
(4.9) uz(z,t) = €xo(z) as t - 0o, for a.e. z € Q.

Invoking (3.17), compactness, and properties of weak-star and weak convergence, we
see that uz(+,1) — €oo ast — oo weakly-star in LY. Defining now ue () := [; €oo(£)
and using (1.6), we conclude that uo, € W1*°(2) and (2.36)—(2.37) hold. O

Lemma 4.8. If (H10) holds then there is a wo, € L*() such that (2.38) holds.

Proof. Thanks to (3.76), (H10), (3.17), compactness, and properties of weak
convergence, we get a Weo € L°(N) such that (2.38) holds. ]

Hence, Theorem 2 is proved.

Acknowledgement. My thanks are due to Prof. Jiirgen Sprekels, Prof. Pavel
Krej¢i, and Prof. Songmu Zheng for fruitful discussions. Moreover, I thank the
referee for valuable comments.

References

[1] G. Andrews: On the existence of solutions to the equation utt = uggt + 0(uz)z. J. Dif-
ferential Equations 35 (1980), 200-231.

[2] G. Bourbon, P. Vacher, C. Lezcellent: Comportement thermomécanique d’un alliage
polycristallin & mémoire de forme Cu-Al-Ni. Phys. Stat. Sol. (A) 125 (1991), 179-190.

[3] M. Brokate, J. Sprekels: Hysteresis and Phase Transitions. Springer-Verlag, New York,
1996.

[4] Shape Memory Materials and their Applications. Vol. 394-395 of Materials Science
Forum (Y.Y. Chu, L. C. Zhao, eds.). Trans Tech Publications, Switzerland, 2002.

339




[5] C. M. Dafermos, L. Hsiao: Global smooth thermomechanical processes in one-dimen-
sional nonlinear thermoviscoelasticity. Nonlinear Anal. 6 (1982), 434-454.

[6] F. Falk: Model free energy, mechanics and thermodynamics of shape memory alloys.
Acta Met. 28 (1980), 1773-1780.

[7] F. Falk: Ginzburg-Landau theory of static domain walls in shape-memory alloys.
Z. Physik B—Condensed Matter 57 (1983), 177-185.

[8] F. Falk: Pseudoelastic stress-strain curves of polycrystalline shape memory alloys cal-
culated from single crystal data. Internat. J. Engrg. Sci. 27 (1989), 277-284.

[9] M. Frémond: Non-Smooth Thermomechanics. Springer-Verlag, Berlin, 2002.

[10] M. Frémond, S. Miyazaki: Shape Memory Alloys, CISM Courses and Lectures, Vol. 351.
Springer-Verlag, 1996.

[11] G. Gilardi, P. Krejéi, J. Sprekels: Hysteresis in phase-field models with thermal memory.
Math. Methods Appl. Sci. 23 (2000), 909-922.

[12] T. Jurke, O. Klein: Existence results for a phase-field model in one-dimensional
thermo-visco-plasticity involving unbounded hysteresis operators. In preparation.

[13] O. Klein, P. Krejéi: Outwards pointing hysteresis operators and and asymptotic be-
haviour of evolution equations. Nonlinear Anal. Real World Appl. 4 (2003), 755-785.

[14] M. Krasnosel’skii, A. Pokrovskii: Systems with Hysteresis. Springer-Verlag, Heidelberg,
1989; Russian edition: Nauka, Moscow, 1983.

[15] P. Krejéi: Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gakuto In-
ternat. Ser. Math. Sci. Appl. Vol. 8. Gakkaotosho, Tokyo, 1996.

[16] P. Krejéi, J. Sprekels: On a system of nonlinear PDEs with temperature-dependent
hysteresis in one-dimensional thermoplasticity. J. Math. Anal. Appl. 209 (1997), 25-46.

[17] P. Krejéi, J. Sprekels: Hysteresis operators in phase-field models of Penrose-Fife type.
Appl. Math. 43 (1998), 207-222.

[18] P. Krejéi, J. Sprekels: Temperature-dependent hysteresis in one-dimensional thermo-
visco-elastoplasticity. Appl. Math. 43 (1998), 173-205.

[19] P. Krejéi, J. Sprekels: A hysteresis approach to phase-field models. Nonlinear Anal.
Ser. A 39 (2000), 569-586.

[20] P. Krejéi, J. Sprekels: Phase-field models with hysteresis. J. Math. Anal. Appl. 252
(2000), 198-219.

[21] P. Krejéi, J. Sprekels: Phase-field systems and vector hysteresis operators. In: Free
Boundary Problems: Theory and Applications, II (Chiba, 1999). Gakkotosho, Tokyo,
2000, pp. 295-310.

[22] P. Krejéi, J. Sprekels: On a class of multi-dimensional Prandtl-Ishlinskii operators.
Physica B 806 (2001), 185-190.

[23] P. Krejéi, J. Sprekels: Phase-field systems for multi-dimensional Prandtl-Ishlinskii oper-
ators with non-polyhedral characteristics. Math. Methods Appl. Sci. 25 (2002), 309-325.

[24] P. Krejéi, J. Sprekels, and U. Stefanelli: One-dimensional thermo-visco-plastic processes
with hysteresis and phase transitions. Adv. Math. Sci. Appl. 13 (2003), 695-712.

[25] P. Krejéi, J. Sprekels, and U. Stefanelli: Phase-field models with hysteresis in one-
dimensional thermoviscoplasticity. SIAM J. Math. Anal. 84 (2002), 409-434.

[26] P. Krejci, J. Sprekels, and S. Zheng: Existence and asymptotic behaviour in phase-field
models with hysteresis. In: Lectures on Applied Mathematics (Munich, 1999). Springer,
Berlin, 2000, pp. 77-88.

[27) P. Krejéi, J. Sprekels, and S. Zheng: Asymptotic behaviour for a phase-field system
with hysteresis. J. Differential Equations 175 (2001), 88-107.

[28] P. Krejéi: Resonance in Preisach systems. Appl. Math. 45 (2000), 439-468.

[29] I. Miiller: Grundziige der Thermodynamik, 3. ed. Springer-Verlag, Berlin-New York,
2001.

340



[30] I. Miiller, K. Wilmanski: A model for phase transition in pseudoelastic bodies. Il Nuovo
Cimento 57B (1980), 283-318.

[31] Space Memory Materials, first paperback (K. Otsuka, C. Wayman, eds.). Cambridge
University Press, Cambridge, 1999.

[32] R.L. Pego: Phase transitions in onedimensional nonlinear viscoelasticity: Admissibility
and stability. Arch. Ration. Mech. Anal. 97 (1987), 353-394.

[33] R. Racke, S. Zheng: Global existence and asymptotic behavior in nonlinear thermovis-
coelasticity. J. Differential Equations 134 (1997), 46-67.

[34] W. Shen, S. Zheng: On the coupled Cahn-Hilliard equations. Comm. Partial Differential
Equations 18 (1993), 701-727.

[35]) J. Sprekels, S. Zheng, P. Zhu: Asymptotic behavior of the solutions to a Lan-
dau-Ginzburg system with viscosity for martensitic phase transitions in shape memory
alloys. SIAM J. Math. Anal. 29 (1998), 69-84 (electronic).

[36] A. Visintin: Differential Models of Hysteresis. Springer-Verlag, Berlin, 1994.

[37] A. Visintin: Models of Phase Transitions. Progress in Nonlinear Differential Equations
and Their Applications, Vol. 28. Birkhiuser-Verlag, Boston, 1996.

[38] K. Wilmanski: Symmetric model of stress-strain hysteresis loops in shape memory alloys.
Internat J. Engrg. Sci. 31 (1993), 1121-1138.

[39] S. Zheng: Nonlinear Parabolic Equations and Hyperbolic—Parabolic Coupled Systems.
Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 76. Longman,
New York, 1995.

Author’s address: O. Klein, Weierstrass Institute for Applied Analysis and Stochastics,
Mohrenstrasse 39, D-10117 Berlin, Germany, e-mail: klein@wias-berlin.de.

341




49 (2004) APPLICATIONS OF MATHEMATICS No. 4, 309-341

ASYMPTOTIC BEHAVIOUR FOR A PHASE-FIELD MODEL
WITH HYSTERESIS IN ONE-DIMENSIONAL
THERMO-VISCO-PLASTICITY*
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Abstract. The asymptotic behaviour for ¢ — oo of the solutions to a one-dimensional
model for thermo-visco-plastic behaviour is investigated in this paper. The model consists
of a coupled system of nonlinear partial differential equations, representing the equation
of motion, the balance of the internal energy, and a phase evolution equation, determining
the evolution of a phase variable. The phase evolution equation can be used to deal with
relaxation processes. Rate-independent hysteresis effects in the strain-stress law and also in
the phase evolution equation are described by using the mathematical theory of hysteresis
operators.

Keywords: phase-field system, phase transition, hysteresis operator, thermo-visco-
plasticity, asymptotic behaviour
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1. INTRODUCTION

In this paper, an initial-boundary value problem for a system of partial differential
equations involving hysteresis operators is considered, and the asymptotic behaviour
of the solutions to this system is investigated. The system has been derived in [25]
to model one-dimensional thermo-visco-plastic developments connected with solid-
solid phase transitions taking also into account the hysteresis effects appearing on
the macroscopic scale as a consequence of effects on the micro- and/or mesoscale.

To model such developments, one is considering the evolution of several quantities:
the displacement u, the absolute temperature ¢, and a phase variable w, which is

* This work was supported by the Deutsche Forschungsgemeinschaft (DFG) by contract
SP 212/10-3.
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usually a so-called generalized freezing index, see [21]. For a wire of unit length, the
evolution of these fields is determined by the following system:

(1.1) QU — Plget = 04 + f(2,t) a.e. in Qu,

(1.2) o = Hilug, w] + OHa[ug, w] ae. in Q,

(1.3) (Cv 0 + Filug, w]); — KkOpp = pu2, + ot + g(x,t,0) ae. in Qu,

(1.4) vwg = —1  ae. in Qeo,

(1.5) ¥ = Haug, w] + 0Ha[ug, w] a.e. in Q,

(1.6) w(0,t) =0, pug(1,t)+o(1,t) =0, 0,(0,t)=0,(1,t) =0 a.e.in (0,00),
(L.7)  u(,0)=ug, wu(-,0)=uy, 0(-,0)=0y w(-,0)=wy ae. in Q,

with Qs 1= Q x (0,00) and Q := [0, 1].

The equation (1.1) is the equation of motion, (1.3) is the balance of internal
energy, and (1.4) is the phase evolution equation. By the constitutive law (1.2),
the elastoplastic stress o is determined, and the constitutive law (1.4) defines the
thermodynamic force ¢. The boundary condition (1.6) means that the wire is fixed at
x = 0, stress-free at © = 1, and thermally insulated at both ends. Here, x denotes the
space variable, t denotes the time, and the indices x and ¢ denote the differentiation
with respect to space and time, respectively.

The mass density g, the viscosity u, the specific heat Cy, the heat conductivity x,
and the kinetic relaxation coefficient v are supposed to be positive constants. The
initial data for the displacement, the velocity, the temperature, and the phase vari-
able considered in (1.7) are denoted by ug, u1, 6p, and wq, respectively. Finally, the
nonlinearities H;, 1 <@ < 4, and F; are hysteresis operators (see below), where one
needs to take into account u,(w, -)|j,q and w(x, -)|j0,4 to compute H;[u., w](z,t) and
Filug, w](z,t).

These operators are supposed to reflect some memory in the material on the
macroscale, resulting from effects in the micro/mesoscale. Such effects can lead to
hysteresis loops, as they are for example observed in the macroscopic strain-stress
relation (e-0, where € = u, is the linearized strain) determined from measurements
in uniaxial load-deformation of materials like shape memory alloys, see, e.g., [2], [4],
[6], [7], [8], [9], [10], [30], [31], [38]. The curves show a strong dependence on the
temperature, but many of them are rate-independent, i.e., they are independent of
the speed with which they are traversed.

There are other approaches to model hysteretic behaviour by considering systems
similar to parts of (1.1)—(1.5), where the operators F; and H;, for 1 < i < 4, are
superposition operators. These models are derived by considering a free energy,
which is a superposition operator, involving a potential which has (one or more)
concave parts. The concave parts of the potential correspond to unstable physical
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states, and these instabilities are supposed to produce the observed hysteresis effects.
Such approaches have successfully been used and investigated in a number of papers,
see, e.g., [3], [5], [7], [9], [33], [37], [39] and the references therein, but the modelling
by non-convex free energies has its limits, since a non-convex part of the potential
alone does not ensure that hysteresis loops are present, see, e.g., [29]. Moreover, the
simple superposition operator cannot represent all the complicated hysteresis curves
that are observed in experiments.

Hence, to describe such structures, the more general hysteresis operators have
been introduced and used in a number of papers, see, e.g., the monographs [3], [14],
[15], [36] on this subject and the references therein. For a final time T° > 0, an
operator H: C[0,T] — Map|0,T] := {v: [0,T] — R} is a hysteresis operator if it is
rate-independent and causal according to the following definitions. The operator H
is called rate-independent, if for every v € C[0,T] and every continuous increasing
(not necessarily strictly increasing) function a: [0,7] — [0,T] with «(0) = 0 and
a(T) =T it holds that H[v o a](t) = H[v](«(t)) for all ¢ € [0, T.

An operator H: D(H) (C Mapl0,T]) — Map[0, T] is said to be causal, if for every
v1,v2 € D(H) and every t € [0,T] we have the implication

(1.8) v1(1) = vo(1) V7 €[0,t] = Hlv1](t) = H]va](2).

An example of a hysteresis operator is the stop operator, which is also called Prandtl’s
normalized elastic-perfectly plastic element. To define the stop operator, we consider
some yield limit 7 > 0, an initial stress 02 € [—r,7], and a final time 7" > 0. For
each input function ¢ € W-1(0,T), we have (see, e.g., [3], [14], [15], [36]) a unique
solution o, € W1(0,T) to the variational inequality

(1.9) o.(t) € [-r, 7] Yte[0,T], o.(0) =02,
(1.10) (et(t) — ot () (or(t) —m) =0 Vne[-rr], ae. in (0,T).

This defines the stop operator S,.: [—7,7] x WHY(0,T) — WHY0,7T): (02,¢) — 0.
An example for the evolution of the input and the output for the stop operator
is presented in Fig. 1, showing the input-output relation of S»[0,e] for an input
function e which initially increases from 0 to 5, then decreases to —6, then increases
to 0, then decreases to —3, and finally increases to 6.

Connected with the stop operator S, is another important hysteresis operator, the
so-called play operator P, defined by

(1.11) Pr: [—r ] x Wl’l(O,T) — Wl’l(O,T): (09,5) — e — ST[U?,E].

It is well-known, see, e.g., [3], [14], [15], that the stop and the play operator can be
extended to Lipschitz continuous operators on [—r, 7] x C[0,T]. Moreover, using the
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A

Figure 1. An example for the evolution of (£(t),S2[0,£](t)), starting in S = (0,0) and
finishing in F' = (6,2).

notation of [3, Chapter 2.5, one has for all 02 € [—r, 7] that 25200, ] is the clockwise
admissible potential and 7P, [0, ] is the corresponding dissipation operator for the
operator S,[0?, ], i.e., for all e € W11(0,T) it holds that

(1.12) (%Sf[og,a]) + |(rP 02, €])s| = Sp[0,eler  ae.in (0,T).

Let Map[0,00) := {v: [0,00) — R}. An operator H: D(H) (C Map[0,00) x
Mapl0, 00) — Map|0, 00) is said to be causal, if for every (e1,w1), (€2, w2) € D(H)
and every t > 0 we have the implication

e1(1) = e2(7), wi(r) =wa(r) V7 €[0,t] = Hler, w1](t) = Hlez, wa](2).

Moreover, the operator H generates an operator H mapping (¢, w) with &, w: Q x
[0,00) — R such that (e(z,-), w(z,-)) € D(H) for a.e. z € Q to the function on Q x
[0, 00) defined by H[e, w](z,t) = H[e(x, ), w(x,-)](t) for all t > 0 and for a.e. x € Q.
In the sequel, we will no longer distinguish between H and the generated operator H.

The hysteresis phenomena described by hysteresis operators are often related to
changes between different configurations within the wire. In the system above, these
configurations are described by the phase parameter w, and the evolution of these
configurations is described by the phase evolution equation (1.4). By considering such
an equation, one can take into account relaxation processes that appear in addition to
the rate independent hysteresis loops, which are modelled by the hysteresis operators.

Let us recall some results for systems with hysteresis operators similar to the one
above. In [11], [17], [20], [21], [23], [26], [27], & multi-dimensional phase transition
is considered without taking mechanical effects into account. This corresponds to
investigating (1.3)—(1.5) without a dependence on u or o. The one-dimensional
thermoelastoplastic hysteresis without considering relaxation processes in the phase
transition, i.e., (1.1)—(1.3) with no dependence on w, has been studied in [16], [18].
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For the complete system (1.1)—(1.7) above with an additional Ginzburg term v,z
on the left-hand side of (1.1) and boundary condition v = 1z, = 0 on 9S2 for u, the
global existence and uniqueness of a solution has been shown in [24].

The system (1.1)—(1.7) has been derived and investigated in [25]. Therein, the
existence, uniqueness, and regularity of a strong solution has been proved (see Theo-
rem 3 in Section 2.3), and it has also been shown that the Clausius-Duhem inequality
and therefore the second principle of thermodynamics is satisfied for the solution.

In the present work, we are dealing with the asymptotic behaviour for ¢ — oo
of the system under consideration. After discussing the assumptions in Section 2.1,
the results are presented in Theorem 1 and Theorem 2 in Section 2.2. The a priori
estimates derived in Section 3 are used in Section 4 to prove these theorems.

2. ASYMPTOTIC BEHAVIOUR OF SOLUTIONS

2.1. Assumptions

The assumptions used in the investigation of the asymptotic behaviour of the
solution to (1.1)—(1.7) are now presented and discussed. Let C[0, c0) denote the set
of all continuous functions from [0, c0) to R, including also the unbounded ones. For
t > 0, the seminorm | - |4 on C[0,00) and on C[0,T] for T > t is defined by

(2.1) |flio,5) = max [f(s)].

0<s<t

We will use the following assumptions:

(H1) We have ug € H*(Q), u1 € WhH>(Q), 6 € H (Q), wo € H'(Q2), and there is
some § > 0 such that fy(x) > § for all € Q. Moreover, the compatibility condition
uo(0) = u1(0) = 0 is satisfied.

(H2) We assume that g: © x (0,00) x R — R is a Carathéodory function such that
there are functions g1, g2: Qoc — [0, 00), with
g1 € L' (Qe0) N L*(Qo0), g2 € L0, 005 L=(Q)) N L*(0, 00; L=(€Y),
l9(x,t,s) — g1(@,t)] < ga(x,t)s,  g(x,t,—s) = gi(z,t) V(z,1) € Qoo, s20.

(H3) The operators Hy,...,Hs, Fi: C[0,00) x C[0,00) — C[0,00) are causal and
map W1 (0, 00) x W21 (0, 00) into W,5! (0, 00). The operators map C[0,T] x C[0, T

loc loc

continuously into C[0,T] for all T > 0, and for all ¢, w € C|0, c0)

File,wl(t) 20 Vit =0.
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(H4) There exist causal operators Fa: W,2!(0,00) x WL (0,00) — VV&)CI(O 00),
Dy, Dy Wil (0,00) x W21 (0, 00) — LL (0,00), G: Wlij(o 00) — WL1(0,00), and
a non-decreasing function k; such that for all e, w € W1 (0 00)

i) |Dile, w]| = etHale, w] + (Glw])eHsle, w] — (File,w]): a.e. in (0, 00),
|Dsle, w]| = e Hale, w] + (Gw])i Hale, w] — (Fale, w]): a.e. in (0,00)
i) [(Glw))e(t)* < k1 (lwlo,g)we(t)(Glw])e () for ae. t € (0,00).

(H5) We have F g, Fao € L'(Q) such that for all e,w € W, (0,00; L*(Q)) with
e(+,0) = up o and w(-,0) = wp a.e. on it holds that

.7:1[8,11)](',0) = .7:170, .7:2[8,11)](',0) == ‘7:2,0 a.e. in .

(H6) There are non-decreasing functions kg, k3, k4: [0,00) — [0, 00) such that for all
g,w € C[0,00)

) max |Hile, w](t)] < k2(leljo.g + [wlog) V> 0.

i) —Fale, w](t) < ks(leljo,g + [wljo,g) (1 + File,w](t)) VYt = 0.
iii) If e, w € W, (0, 00) then

max, [(Hile, w])e(t)] + [(File, w])e(t)]

k4(|€|[0 t] + |’lU|[0 t] (|5t | + ’lUt t ) for a.e. t € (0700)

(H7) We have f € L°(0,00; L?(Q) and there exist functions f., € L?(Q2), F €
L2(0,00; HY(2) N H'(0,00; L*(2) N L*°(Qs), and positive constants Ko, K; such
that
f— oo € LN0,00: (), Fla,t) :/ F(6,0)dé for ae. (2,1) € O,
1
(2.2) | fooll L1 (o le(®)] < (1 — Ko)|File, w](t)| + K1 Ve, w e C[0,00), t=0.

For the formulation of the remaining assumptions, we use the following notations,
which are well defined by (H1):

(2.3) €0,min :=min{ug .(z): £ € Q}, €0 max := max{ug(x): = € N},

(2.4) Wo,min :=min{wo(z): © € Q},  wWo,max := max{wp(z): = € N}.

(H8) For each ea > 0, there exists e_ < €0,min, €+ = €0,max; WA > 0, w_ < Wo min,
and w4 > wo max such that for all e,w € C[0,00) and all ¢ > 0,
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i) Ife(t) > s,

(2.5)  comin <€(0) < €omax,  €- —ea <e(T) ey +ea VT 0,1,

(2.6) wo,min SW(0) € Womax, W— —wa Sw(T) <wg+wa V7 €08,
hold then we have

(2.7) Hile,w](t) = [|[Fllz=(u), Hale, w](t) = 0.

ii) If e(t) < e_, (2.5), and (2.6) hold then we have
(2.8) Hale, w](t) < =[[Fllzoe(u),  Hale, w](t) <O.
iii) If w(t) > w4, (2.5), and (2.6) hold then we have
(2.9) Hsle,w](t) >0, Hale, w](t) > 0.
iv) If w(t) < w_, (2.5), and (2.6) hold then we have

(2.10) Hsle,w](t) <0, Hale,w](t) <O0.

(H9) For every ¢,w € W,2!(0, 00) with ¢ and w bounded and

/Ooo(lpl[é,w}(t)l + [Dale, w](t)]) dt < oo,

there exists o € R such that lim e(t) = eco.

t—o0

(H10) For every e,w as in (H9), there exists wo € R such that tlim w(t) = Weo-

Before the asymptotic results will be presented in Section 2.2, the above assump-
tions are discussed, starting with considerations concerning relations to the physical
background.

Remark 2.1. Thanks to (H1), there is a positive lower bound for the initial
temperature and the lower bound for g in (H2) ensures that this function does not
model any further cooling at absolute zero. Considering the free energy F, the
entropy S, and the internal energy U as in [25], i.e.

.7'—[8,10,9] = Cve(l — 111(9)) +.7:1[€,w] + 9]'—2[6,10],
S[Ea w, 9] = C’Ve - f2[57w]a
Ule,w, 0] := Cyv 0 + Fie,w],
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the lower bound for F; in (H3) yields that the internal energy is nonnegative. More-
over, the nonnegativity of the expressions on the right-hand sides of the equations
in (H5)1) is combined with (H5)1ii) to prove that the system (1.1)—(1.7) is thermo-
dynamically consistent, see [25, Remark 3]. The functions D; and D, arising in (H4)
are related to the energy dissipation during a hysteresis loop.

Remark 2.2. There are cases where the operators H; are decoupled. For exam-
ple, the model for phase transition without mechanical effects as studied in [11], [17],
[20], [21], [23], [26] can be combined with the model considered in [16], [18], that is
the thermoelastoplastic hysteresis model without relaxation processes. In that case,
if one does not take into account any direct coupling between phase transitions and
mechanical effects, but only a coupling via the energy balance, one ends up with the
system (1.1)—(1.7) with H; and Hs depending only on u,, and Hs and H4 depend-
ing only on w. Moreover, one is sometimes dealing with hysteresis operators arising
as the sum of a superposition operator and some well-known hysteresis operator.
Hence, we will investigate decoupled H; of this form. Considering causal operators
Hi, ..., Hs: C[0,00) — C[0,00) and nonnegative functions hi,...,hs € C2(R), we
can define the operators Hi, ..., Hq by setting, for all £,w € C[0,00) and all ¢ > 0,

Ri(e(t)) + Hile](t)  for i=1,2,
+H

(2.11) Hile, wl(t) := {h;(w(t)) Jw](t) for i =3,4.

For 1 < i < 4, we assume that we have a clockwise admissible potential and the
corresponding dissipation operator for H;, i.e. (see [3, Chapter 2.5]), we assume that
we have a causal operator F;: C[0,00) — C[0,00) which is mapping Wlicl (0,00) in
WL1(0,00) and a causal operator D;: W21 (0, 00) — L. (0, 00) with

loc
(2.12) Difv]| = viHi[v] — (Fiv])e  ae.in (0,00), Yve W20, 00).
Then (H4) holds with G being the identity and Fi, Fa, D1, Dy defined by

(2.13) File,w](t)
(2.14) Djle, w(t)

hi(e(t)) + F;[el(t) + hjsa(w(t)) + Fjpalw](t),
1D;[e](t)] + |Dj2[w](t)],

for all e,w € C[0,00), t > 0, and j € {1,2}.
If hi(r) = h}r? with some positive constant h} then the corresponding operator H;
models a linear elasticity with a hysteretic modification.

Remark 2.3. A sufficient condition for (H8) to be satisfied is that the two fol-
lowing assumptions (H11) and (H12) hold. These assumptions are especially useful,

316



if the operators Hi, ..., H4 are decoupled as in the Remarks 2.2, 2.5-2.6. The no-
tation of an outward pointing operator used in these assumptions is introduced and
discussed in [13].

The more general formulation in (H8) is helpful, if the operators are coupled,
e.g., if they are derived from multi-dimensional stop or Prandtl-Ishlinskii operators
(see, e.g., [15], [21], [22], [23]).

(H11) For each ea > 0, there exists e- < €omin and €4 > €0 max such that
for all w € C[0,00) with womin < w(0) < womax the operator mapping ¢ €
C[0,00) to Hile,w] € C[0,00) is pointing outwards with bound ||F| =) in the
ea-neighbourhood of [e_,e4] for initial values in [€0,min, €0,max] and that the same
holds for Hs just with bound 0, that is to say for all £ € C[0,00) and all ¢ > 0 holds:
i) If e(t) > e4 and (2.5) hold then we have (2.7).
ii) If e(t) < e_ and (2.5) hold then we have (2.8).

(H12) There are wa > 0, w— < Womin, and w4 > wWomax such that for all
e € C0,00) with €o.min < €(0) < €0,max the operators C[0,00) > w — Hsle, w]
and C[0,00) > w — Hyle,w] are pointing outwards with bound 0 in the wa-
neighbourhood of [w_,wy] for initial values in [wo min, Wo,max), that is to say for all
w € C[0,00) and ¢ > 0 it holds that:

i) If w(t) > wy and (2.6) hold then we have (2.9).

ii) If w(t) < w— and (2.6) hold then we have (2.10).

Remark 2.4. If we use H3 = H4 = 0 in Remark 2.2 then Hs and H, are
superposition operators and the assumption (H12) holds if and only if there are
wa > 0, w— < Wo,min, and W4 > Wo max such that

e For all s € [wy,wy + wa] holds h5(s) > 0, h)(s) > 0.

e For all s < [w_ —wa,w_] holds h4(s) <0, hj(s) <O0.

A similar condition has been used in [1], [32], [33]. If this condition is directly adapted
to hysteresis operators, one ends up with an assumption similar to (H12), but with
the condition (2.6) replaced by w_ —wa < w(t) < wy +wa only. This assumption is
stronger than (H12) and will be denoted by (H12+). There are important hysteresis
operators satisfying (H12), but not (H12+).

In a similar way, one can consider a stronger version (H11+) of (H11), where
e_ —en < e(t) < ey +en is used instead of (2.5).

Remark 2.5. If for the functions and operators in Remark 2.2 there are positive

constants Ko 1,..., Ko 4 such that

M Niv X 2,1 = ) Ue ,OO b \Z\ )
2.15 H )| <Ky VEZ=0 o 1<i<4
(2.16) :ETEI:POO hll(T‘) > K271 + HF||L°°(QOO)7

. 1m (r) > 2.9 xS

2.17 + l'i h; Ky; Vv2<j<4
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then the assumptions (H114) and (H12+) are satisfied. Hence, (H11), (H12), and
(H8) hold. Moreover, the condition (2.2) in (H7) is satisfied if the other assumptions
n (H7) hold.

Remark 2.6. For 1 < ¢ < 4, we consider a nonnegative weight function ¢; €
L'(0,00) and a function of € W*(0,00) such that o) (r) € [—r,r] for all r > 0,
|(69),] <1 a.e. on (0,00), and o2(r') = 0 for all ¥’ > R; for some R; > 0. Moreover,
we consider yield limits 7; ; € R, initial values agj € [—ri j,ri ], and weights ¢, ; > 0.
Now, we define H;: C[0,00) — C[0,00) as the Prandtl-Ishlinskii operator

(2.18)  Hi[v] := / ©i(1)S [0 (r),v] dr + 2%7erin [ogj,v] Vo e C[0,00).
0 ,
J
The more general definition of this operator involing a Stieljes integral, see, e.g. [15],
would allow to write this sum as one integral. A clockwise admissible potential for
this operator is defined by F;: C[0,00) — C[0, 00) with

(219) A ::%/Ooo%(r)sf[ oldr+ 2 Z%,J 2 l0?).0]

for all v € C[0, 00) since Proposition 2.5.5 in [3] and (1.12) yield that (2.12) holds
for

0

(220)  Difo] = 5/°°m<> B eldr| + 3 sl ol

for all v € W,\![0,00). Defining now H; and F; as in Remark 2.2, and using well-
known properties of the stop operator one can show that (H3)—(H6) hold.

Since for oscillations that are smaller then the yield limit of a play operator, the
operator stays constant after the first oscillation, we can apply (2.14) and (2.20) to
deduce that (H9) holds, if and only if for all s > 0 the function ¢; + @2 does not
vanish a.e. on [0, s]. For (H10), we get an analogous condition, just with @1 + ¢
replaced by @3 + @a4. If one wants to ensure as in Remark 2.2 that (H11) and (H12)
are satisfied, one has to require that 2.15 holds, which is equivalent to the condition

(2.21) / roi(r)dr + Z‘Pi,jﬁ,j <Kp; <400 V1<i<4
0 j

If this condition is satisfied, we see that (H11) and (H12) hold for appropriate func-
tions h;, but this argumentation can not be applied if H; = H,; for some i € {1,...,4}.

In [13], it is proved that (H12) holds for Hs := H3 and H, := H,, independently
of (2.21). Moreover, it is shown there that for ; := H; the condition in (H11)
holds if and only if fooo re1(r) dr = oo, and that an analogous equivalence holds for
Hg = Hg.
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2.2. The asymptotic result
The following two theorems are the main result of this paper:

Theorem 1. Assume that (H1)-(H8) are satisfied. Moreover, assume that
(u, 0, w) is a solution to (1.1)—(1.7) such that

(2.22) u € Higo(0,00; L*(Q)) N Hig (0, 00; H*(92)),
(223) RS Hlloc(o OOLQ(Q)) loc(o Q5 HZ(Q))a
(224) w e Hlo (0 05 L2( )) N I_Iloc(0 OOHZ(Q»)
(2.25) O(xz,t) >0 YaxeQ, t=0.

Then, it holds that

(2.26) Tim [z = 0, Jim (0l = 0.
(2.27) o(-t) = —Fs as t — 0o, in L*(Q),

(2.28) Jim (102, 8) 2@y =0, Jim [[6(1) = 0(t) | @) = 0,

with

(2.29) Foo(x) ::/ foo(£)dE, (1) := / O(y,t)dy YaxeQ, t=>0.
1 Q

In addition, we have a constant 6, > 0 such that

(2.30) O(z,t) > 0. VoeQ, t=>0.

Remark 2.7. We see that (2.26) yields that for ¢ — oo the viscous part of the
stress tends to zero, and by (2.27) the stress tends to —F, which is the potential
corresponding to the limit fo, for ¢ — oo of the applied force f. Moreover, by (2.28),
we see that the temperature becomes more and more uniform in space. It is an
open questions whether one can show convergence for 8, u,, or w under the general
assumptions of the theorem or if oscillations can appear up to t — oc.

Also in [33], where the system (1.1)—(1.3) with H;, Hz, and F; just being non-
linear superposition operators of u, has been considered, convergence for 6 and u,
could only been proved by using additional assumptions. Corresponding additional
conditions are required here in part b) and c¢) of Theorem 2 below, and allow to show
the convergence of the temperature for ¢ — oo. If; in addition, Ho and H, are spe-
cial operators, like, e.g. stop operators, one could also show some convergence for u
and w, by adapting the argument in [33, Lemma 4.5] to the more general situation
considered here.
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Now, convergence results are presented that can be proved using additional hy-
potheses.

Theorem 2. Assume that the assumptions of Theorem 1 are satisfied.
a) If G is the identity operator, then we have

(2.31) Jm |we (-, ) L2 ) = 0, Jim 19 t)|L2(0) = 0,
(2.32)  lim [(Fifue, w])e ()] 22() = Z i [ (M [z, w])e (- 1)l L2) = 0-

b) If H1 =H3=F1 =0,g=0, and f =0, then we have

Q . [o')
(2.33)  0(,t) — 0ol L1 (q) + EHWHZL(Q) ast— oo, in L*(1),

(2:34) T [[Hofurg, w](- 1) 20y = 0.
c) fHi=H3=F, =0,9g=0, f =0, and G is the identity operator, then we
have
(235) tlirgo HH4[U$,w](',t)HL2(Q) =0.

d) If (H9) holds then there exists a us € W1°°(Q) such that

(2.36) u(-,t) — Us as t — 0o, weakly-star in WH>°(Q),

(2.37) Ugp(+,t) = Uso,y ast — 00, a.e. in
e) If (H10) holds then there exists a we, € L*°(Q2) such that

(2.38)  w(t) > ws ast— oo, weakly-starin L°°(2) and a.e. in Q.

Remark 2.8. If (H8) does not hold then one can still prove the results in The-
orem 1 and some of the results in Theorem 2, if some other additional assumptions
are satisfied.

i) If (H4) and (H6) with k1, ..., ks replaced by positive constants hold then one

can still show the results in Theorem 1 and the results in Theorem 2 a)—c) hold.
ii) If (H11), (H4)ii) with k; replaced by a positive constant, and (H6) without the
|wljo,¢-term in the evaluation of kg, k3, k4 hold then one can prove that the
results in Theorem 1 and the results in Theorem 2 a)—d) hold.
iii) If (H12) and (H6) without the |[(o 4-term in the evaluation of k2, k3, k4 hold
then one can prove the results in Theorem 1 and the results in Theorem 2 a)—c)
and e) hold.
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2.3. Existence of solutions

Before proving the asymptotic result, it will be recalled that there is a solution
to the problem under consideration satisfying the regularity and positivity demands
presented in Theorem 1, at least if some additional assumptions are satisfied. These
assumptions will be
(H13) f e HL .(0,00; L*(2)).
(H14) The function g; arising in (H2) satisfies g1 € LY. (Q) and for every T' > 0
there is a positive constant K3 such that [0g/00] < K31 a.e. in Q x (0,T) x R.

(H15) For every T' > 0 there are positive constants K4 rp,..., K7 and non-
decreasing functions ks, ke, r: [0,00) — [0, 00) such that for all €, £1, €3, w, w1, wy €
C[0, 00) the following holds:

i) We have for all ¢ € [0,T]:

[Hale, w](t)| + |Hale, w](t)
max [Hiler, wi](t) — Hilea, wa](t)

1<i< (|51 - 52|[0,t] + |wy — w2|[0,t])-

ii) If e, €1, €2, w, w1, w2 € W, (0, 00) then the inequality in (H4)ii) with ki (Jw|jo,4)
replaced by K¢ 1 holds for a.e. t € (0,7) and

max |(Hile, w)):(t)] < Kr7,r(lec(t)] + |we(t)]) for a.e. t € (0,7T),

(2.39) |File, w])e (O] < ks, (leljo,g + [wlo,g)(lee(®)] + |we(t)])
for a.e. t € (0,7,
(2.40) | Filer, wi](t) — Fulea, wo)(t)

< ke r(lenljog + le2lo,g + [wiljog + [w2l0,9)
 (12100) = 220) + 0r(0) = wa0)
t
+/ (le1,e(m) — e2,4(7)] + |w1,e(7) — w2,t(T)|)dT)
0
Vtel0,T].
One can extend Theorem 2.1 in [25] to the following result:

Theorem 3. Assume that (H1)—(H3), (H4)1), and (H13)—(H15) are valid. Then
the system (1.1)—(1.7) has a unique strong solution (u,,w) such that (2.22)—-(2.24)
hold. This solution also satisfies (2.25).

The original existence result in [25] has been formulated with a stronger version of
the assumption (H15), where ks 7 (- - ) in (2.39) and ke (- - -) in (2.40) are replaced
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by positive constants. Combining this stronger assumption with (H4) i) and the con-
tinuity of F; on C[0,T] x C[0,T] (see (H3)), it follows that H; and Hs have to be
uniformly bounded. However, uniform boundedness is not satisfied in many impor-
tant situations, e.g., if Hj, defined as in (2.11), is modelling a linear elasticity with
a bounded hysteretic modification as in Remark 2.2. Using the assumption (H15)
allows to apply the existence result above also in this situation. In [24], the au-
thors of [25] consider a hypothesis analogous to (H15) for a modified version of the
system (1.1)—(1.7).

We now sketch the proof of Theorem 3: We observe that, in the global existence
proof in [25], the stronger versions of (2.39) and (2.40) are applied after the uniform
estimates for u, and w have been derived. To perform the a priori estimates, it
suffices to use just (2.39) and (2.40). Moreover, (2.39) and (2.40) also suffice for the
local existence result in [25, Section 3], as can be seen from a careful examination
of the proof. Details can be found in the forthcoming paper [12]. Therein, it is also
shown that one can replace the boundedness of Ho and Hy, as assumed in (H15) 1),
by the hypothesis for F» in (H6)1). One is then able to consider the case where one
assumes (H11) for Hs consisting of Prandtl-Ishlinskii operators depending only on ¢.
In this case, Hy is unbounded, see Remark 2.6.

Remark 2.9. For nonnegative functions hq,...,hs € C?*(R) with hY hY €
L®(R), hb, hy € WH°(R), and operators H,, . .., H, as in Remark 2.6 with nonneg-
ative weight functions ¢1, ..., o4 € L1(0, 00) satisfying (2.21) one can use well-known
properties of the stop operator (see, e.g., [3], [14], [15], [36]) to show that (H15) holds.

3. UNIFORM A PRIORI ESTIMATES

In this section, it will be assumed that (H1)—(HS8) are satisfied and that a solution
(u,0,w) to (1.1)—(1.7) is given, such that (2.22)—(2.25) hold. To prepare the proof of
the asymptotic results in the next section, some a priori estimates are derived that

are uniform with respect to time.

Before this is done, we consider the energy balance and derive an immediate

consequence:

Remark 3.1. Multiplying (1.1) by u; and adding the result to the balance
law (1.3) for the internal energy, we get the balance law for the energy

(3.1) (CV9 + gu? + fl[um,w]) — Kbz = (us(pty +0))z + g+ uef ae. in Qo

t
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For ¢t > 0, we integrate this equation over Q x (0,t), and use Green’s formula, (1.6),
(1.7), (H1), and (H5), to show that

(3.2) Cvat) + guut(-,t)niz(m — I+ L(t) Yt=0

holds for the § defined in (2.29),

(3.3) Io = Oy ol vy + s (e +/ Frole)dz >0,
Q

(3.4) L(t) := /O/Q(g(;z:,T,H(x,T)) +ui(x, 7)f(x,7))dedr

*/(fl[uz,w](x,t))dz Yt > 0.
Q

In the sequel, for 1 < p < 0o, the notation || - ||, will be used as an abbreviation for
the LP(Q)-norm, and |||/~ will denote the C(Q2)-norm, i.e., the maximum norm on Q.
Moreover, C;, for i € N, will always denote generic positive constants, independent
of time, space, and the considered solution.

Thanks to (2.22)—(2.25) and (H3), we can assume without losing generality that
o and v are continuous (maybe unbounded) functions on Q. = Q x [0,00), such
that (1.2) and (1.5) hold for all (x,t) € Q.. Because of (1.7), (2.3), (2.4), we can
apply the assumption (H8) for () := uy(z,) and w(:) := w(z, ). For the sake
of notational convenience, we assume in the remaining part of this section without
losing generality that p=p=Cy =xk=v = 1.

In the following estimates, some ideas from [25], [33], [35] are used.

Lemma 3.2. There are two positive constants C1, Cy such that

(3.5) %gl;(lW(-,t)lh + [Jut (- ) l2 + (|1 F1 [ue, w] (- 1) |l1) < C,
(3.6) | a0, 00l + gt 0¢, 01D < o
0
Proof. Let
(3.7) B(t) = /Q(}'l[uw,w](x,t)  fl@)ule, ) + Ki)de V> 0.
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Now, we get from (3.2) by using (2.29), (2.25), (3.3), (3.4), Holder’s inequality,
Young’s inequality, (H1), (H2), (H5), and (H7) that for all t > 0

38) (106D + 5l 013 +w(0)
<ot [ (Ol 7 + s 7)) e

1 t
+ 5/0 (LFCom) = Foollz + £ C7) = Foollz e, 7)3) dr
By (3.7), Holder’s inequality, (1.6), (H3), and (H7), we have
U(t) > Ko||lFi[ug, w](-,t)|]1 VE=0.

Hence, because of (3.8), we can apply Gronwall’s Lemma, (H2), and (H7) to show
that (3.5) and (3.6) are satisfied. O

To prepare the following estimates, we now consider the transformation due to
Andrews [1], which is also used, e.g., in [32], [33], [25], and introduce functions
p.q,6: Qs — R that are defined by

(3.9) p(x,t) = /196 ug(6,8)dE,  q(m,t) == ug(z,t) — p(x,t) YV (2,t) € Qoo
(3.10) G(z,t) == o(x,t) + F(z,t) V(1,t) € Qo

with F as in (H7). Recalling (1.1)—(1.7) and (H7), we see that

(3.11) Dy — Pos =& ae. in O,

(3.12) p(1,8) = pa(0,6) =0 ace. in (0,7),
(3.13) p(@,0) = [ w(©)de ae inQ
(3.14) & ~ 5 aen Q,

(3.15) o2, 0) = uo o () /1 "i(©)de ae. in Q.

Lemma 3.3. There are positive constant Cy4, C5 such that

(3.16) %gg(pr(',t)llz + llp(,t)lloo) < Ci,

(3'17) Sup(”uw("t)Hoo + Hw(at)lloo + ||u(at)||oo + HQ('vt)Hoo) < Cs.

<

Proof. In thelight of the estimate for u; in (3.5) and the definition of p in (3.9),
we see that (3.16) holds. Considering (H8) for ea := 2Cy + 1, we get e < €0 min,
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€0,max < €4, W— < Wo,min, and Wy > Wo max such that the remaining conditions
n (H8) are satisfied. Now,

(3.18) up(w,t) € [~ — 20,64 +2C4), w(x,t) € [w_,wy] V(z,t) € Qoo

is proved by contradiction. Suppose that (3.18) does not hold. Then there is some
0 € (0,min{wa,1}) such that u, <e_ —2Cy —§ and/or u, > ey +2C4 + 6 and/or
w < w_ — 3§ and/or w > w, + § somewhere in Q. We have u,(z,0) = ug .(z) €
[e_,e4] and w(x,0) = wo(z) € [w_,w;] for all x € Q because of (2.3) and (2.4).
Since (2.22) and (2.24) yield that w and wu, are continuous on Q.,, we get z; € €,
t; > 0 such that

(3.19) {u$(x1,t1) e{e_. —2Cy — 6,64 +2C,4 + 0}
and/or w(z1,t1) € {wy +6,w_ — 6},
(3.20) - =201 — 6 <ug(z,t) <ep +204+35 Vte[0,t), z€Q,
( ) e =204 — 0 < up(z,t1) ey +2C4+6 VreQ,
(3.22) w_ — 6 <w(r,t) <wy+5 Vte[0,t1), v €Q,
(3.23) _—§<w(rt) <wy +6 YreQ.
Hence, we see that (2.5) with € := u,(z,-) and (2.6) with w := w(x,-) hold for all
x € Qand t < t1, and it remains only to check the first condition in (H8)1)—-iv) if one
wants to apply one the corresponding inequalities (2.7)—(2.10). Since u, and w are

uniformly continuous on Q x [0, ], there is some open neighborhood U C  of x;
such that

| >

(3.24) |ug (2, t) — ug (21, t)| + |Jw(z, t) — w(zy, t)| < Ve eU, t' €l0,t].

Now, we consider the case ug(x1,t9) = €4 + 2Cy + 6. Since u, is continuous on
Q x [0,t1] and u,(z1,0) < £4, we get some to € (0,#;) such that

§ §
(3.25) ei+ 5= ug(z1,t0), €4+ 3 < Ug(21,t) < ey +2C4+0 Vit € (to,t1).

Combining this with (3.24), we conclude that u,(x,t) > ey forallz € U, t € (to,t1).
In the light of (2.7) in (H8)1), we see that

(3.26) |[|F|l L) < Hifug, w](z,t), 0< Holug,w|(z,t) YreU te(to,tr).

Applying (1.2) and the fact that § > 0 on Q4 by (2.25), we observe that ¢ > —F
a.e. in U X (tg,t1). Thanks to (3.14) and (3.10), we deduce that ¢; < 0 a.e. in
U X (to,t1). This leads to

/U(q(w,h) —q(z,tp))dedr = /U/t:l qi(w,t)dtdr <0
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On the other hand, using (3.9), (3.16), (3.24), (3.25), and uy(z1,t0) = €4 + 36, we
conclude that

/U(q(:c,tl) —q(z,t0))dz > [ (ug(w,t1) — Cs — (ug(w, to) + Cy)) da

/
1) 1)
> /U(um(%hh)—g - (uw(wl,to)—i—g) —204) dz
> / éd;zc>0
= U4 .

Hence, we have derived a contradiction. By an analogous argument, we get a con-
tradiction if u,(z1,t1) = e — 2Cy — 4.

Now, we will deal with the case of w(z1,t;) = wy + d. Applying the continuity
of w, we get some tg € (0,%1) such that

1) )
(327) w(a:l,to):w++§, w++§ <’LU(£Z?1,t) <U)++5 Vit e (to,tl).

Combining this with (3.24), we see that w(z,t) > wy for all x € U, t € (tg,t1).
Therefore, we conclude from (2.9) in (HS8)iii) that

(328) H3[u1‘7w](xat) = 07 H4[uz,w](x,t) =20 Vze Ua te (t()atl)'

Since 6 > 0 a.e. on Q by (2.25), we deduce now from (1.5) and (1.4) that w; < 0
a.e. in U X (to,t1). This leads to

/U(w(:c,tl) —w(z,tp))de = /U/: w(z,t) dt da < 0.

Since w(x1,t1) = wy + d, (3.27), and (3.24) yield that the integral on the left-hand
side has to be positive, we have derived a contradiction. An analogous argument to
get a contradiction can be used if w(z1,t;) = w_ — 4.

Hence, we have derived a contradiction for all cases we have to consider by (3.19).
Therefore, we have proved (3.18). Recalling (1.6) and (3.9), we get also uniform
bounds for v and ¢, and (3.17) is proved. O

Remark 3.4. Because of (3.17), we have uniform bounds for u, and w. Thanks
to (H6), (3.5), (1.2), (1.5), and (1.4), we see that there are positive constants Cy,
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C7,...,Cq such that

(3.20) s, sup([as ] 0)) < G
(3.30) lo| + |we] < C7(140) a.e. in Q,
1
(3.31) 0< sup/ (—Falug, w](z,t)) de < Cs,
o<t Jo

(3.32) max |(Hifuz, w])e| + [(F1lue, w])e] < Co(luae| + vwe(Glw])e)

1<i<4

Since (3.17) and (H4)ii) yield that 0 < w;(Gw]): < Crow? a.e. in Qs, we deduce
that

(3.33) max |( i, W)t + | (Fr[ue, w])e] € Cr1(|uge] + |we]) a.e. in Qo

We apply (H4) i), (1.2), (1.5), (1.4), and (H4)ii) to conclude that, a.e. on Q, it
holds that
(3.34) (F1[ug, w]): — oz, t)ug:
= (Glw])tHs[uz, w] — | D1z, W]| — OHa sy, W]tz
= — [(Glw])iwi| = [D1[uq, ]|
— 0(Halua, wlugr + (G[w])e Halue, w]).

2

+
2

Lemma 3.5. We have a positive constant C1o such that
2
Ugt

(3.35) /OOO< 569| (Gl l)dt

Oz
[P
+ [ 1Dalus,wl Ol e+ suplind( )]s < Cra
0 0<t

g("t) ('at)

Proof. Testing (1.3) by —1/6 and using (1.6), (3.34), (H2), and (H4)i), we
observe that

_%/ﬂ 0ot do +/Q<(99((j tt) )2 N u;(i:ct)t)> dz

9 [(Glw])e (@, Yw(z, )| + [Di[ue, w](z, t)]
,E/Q]:Q[ux, x,t)dx — / 80, 1) dx

fAFWﬂmM@@HWM%mN%

Now, we integrate this equation over time and observe that (3.35) follows by apply-
ing (3.31), (H2), (H5), (3.5), and the inequality [Ins| < s —Ins for all s > 0, which
can be proved by elementary analysis. O
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Lemma 3.6. We have a positive constant C13 such that

(3.36) /Ooo(uxt(~,t)|? + e 03 + lpC D115 + 1(GLwl)e ¢ 11T
+ | (Fr e w])ell} + | (VO D)T) dt < ©

Proof. Since § > 0 a.e. on Qy, we can apply Schwarz’s inequality and (3.5) to
show that for all ¢ > 0

330 ol = | %\/m,tidmcm

Ugt

%("t)

2

Recalling now (3.35) leads to the estimate for u,; in (3.36). Using that, by (1.6) and
(2.22), us(y,t) = foy ugt(x,t) da for all y € Q, we get the estimate for u;. Combining
this estimate with (3.9) leads to the estimate for p.

Applying (3.32), (H4)ii), (3.35), and Young’s inequality, we deduce that

/0°°( (G[w)): 2) i < Cus.

Considering now (3.37) with u, replaced by (G[w]):, we get the estimate for (G[w]);
n (3.36), and the estimate for (Fi[uy,w]); is derived analogously. Thanks to

2+HM(.¢)

Vo

Schwarz’s inequality, we have

oAl = [ Pt < |G| [vacoll,

In the light of (3.5) and (3.35), we see that also the estimate for v/, in (3.36) is
established. 0

Lemma 3.7. For § and I, as in (2.29) and (3.4) there are positive constant C1g,
C17, and C1g such that

(338) |11(t)| < 0167 017 < ?(t) < 018 Vt>=0
(3.39) 10C¢,1) = 0()]loo < 162,01 < 1620 8)ll2 VE=0

Proof. Combining (3.4), (3.6), (1.7), (3.5), and Holder’s inequality, we see that

I1(s)] < Co + | [ w.9) = w0 (0)) o)

+/0 1FCo8) = foo()ll2 lue (-, £)|2 dt.
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Recalling (3.17), (3.5), (HT7), and (H1), we get the uniform bound for I; in (3.38).
Since s +— —Ins is a convex function on (0,00), we get by (2.25) and Jensen’s

ln/@x t)d /ln(ﬁ(m,t))dm Vt>=0

Invoking now (3.35), (2.29), and (3.5), we get (3.38). The first inequality in (3.39)
follows from the definition in (2.29), and the second by applying Schwarz’s inequality
and fQ 1dz = 1. (|

inequality that

Lemma 3.8. We have a positive constant Cyy such that

a0y [T (ol + | grren|  (FR2) )ar
+sup(ue )l + 100 0)2) < oo

Proof. We test (3.1) by 6 + fu? and (1.1) by au? where v > 0 will be fixed
later. Summing the resulting equations and using (1.6) and (3.4), we observe that
forallt >0

2

Ban  gaecn ¢ o] 10+ Gt
+ (1 4+ 3a) ug (-, g (- 1)]13
<0(t) al(,;t(t) + I(t) + I3(t) + L4(t),
with
(3'42) 12(t) = /Q(_(]:l[umaw])t(w’t) +g(x,t,9(x7t)) + ut(‘rvt)f(mat))
% (B(x,t) — (1)) dz,

(3.43) Is(t) := — /Q (%(.7:1 [, W) us + 20,0t + w00,

+(1+ 3a)ut2uma) dz,
(344) L) := / (g+ 1+ 2a)utf) ut dex.

In the sequel, the generic constants C; will be independent of a. We estimate the left-
hand side of (3.42) by using Holder’s inequality, (H7), (3.39), and Young’s inequality,
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resulting in

(345) 12(t) < (ICF e o)+ g 1,06, )I1 + e Do £ D)
<16 1) ~ 80)
< o ((Falta, o O + g 60, DI+ e, DIZ)
21000013

| oo

Invoking (3.43), (3.33), (3.30), Holder’s inequality, and Young’s inequality, we deduce
that

(346)  Is(t) < Coa((1 + a)Juea (-, )u ()l + [luf ()11 + [luf ()0 £)]]1)
+ 20102( ue (-, e (-, )1 + Cosllue (- )0 (-, 1) 2
+ Coa|0a (-, t)ur ()0, )11 + (1 + @) Cosluf (-, )uea (-, )0, )11
< Coglus (s tyuss (-, 1)15 + Cor (1 + @) Jus(-, )13

1
+ Cas(1+ a®)[[ue( OIS0, DI + 51162 (5 DII3.

Using (3.44), (H2), Holder’s inequality, (3.5), (HT7), (3.39), (3.38), and Young’s in-
equality, we conclude that

3.47)  2L(t) < llg1( Dll2llue( Dll2flus(- )l
+(0(t) + 10, 1) = () lloo) 192 )l oo [lue (-, 1)II3
+ (L4 20) e (5 Ol F (5 )2l [ue (- B3
< %H%H% + Cao(lg1 (- OII3 + lg2( )l o + Ng2(, 1)113)

+ Cao(1 + ®)[|ue (-, 1)1
Because of (3.2) and Young’s inequality, we have

_ L)

(348) A0 oL (1)

ot

< o

+

5 ) . 1/0L(t)Y
E(Il(t))z + w2 + 1( ot ) '

DO | =

From (3.4), we get by using Holder’s inequality, Young’s inequality, (H7), and (H2)
that

39) (P2 < Ol t 0 NIE + e OB + 15 s el DI
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Now, we integrate the sum of (3.41) and (3.49) over time, and use (1.7), (H1),
(3.45)—(3.49), (3.6), (H2), (3.5), (3.36), (3.38), and 6 > 0 a.e. on ) to show that

1 «@
§||9('a5)||§ + ZHUt('»S)Hi

o [ (R0 + 0 st e + 2 (2200 )

< Cso (1 +a’ + /OS(Iut(-»t)um(wt)lg + (14 o) us (O 10C, )13 dt)

holds for all s > 0. Next, we define a := (39, apply Gronwall’s Lemma, and
recall (3.36) to show that (3.40) is satisfied. O

Lemma 3.9. There are positive constants Cs3, C34 such that

(3.50) /Ow(lluzt(»t)llg (G (5 )we (5 )l + (D1 e, w]( 1)) dE < Cs,
(3.51) /Ooo(llpm(wt)Igﬂ(p+f1)t(',t)||§+|ut(wt)|§o+|(fl[uz,w])t(wt)Ig

+ZH s ) (o 8)13 4+ 1(GLw])e (- 8)]13) d < Cag

Proof. Integrating (1.3) over 2, and applying (1.6), (2.29), (3.34), and (H4) ii),
we derive

D)+ gt 00 ) = Gl -l = [Py e D)

(O(z,t) — () (Ha[uz, w](x, )tz (z,t) + (Glw])s (z, t)Ha[thw, w](z, 1)) da

e (- )13 <

D

- ?(t)% /Q Folus, w](x, £) da.

We multiply this inequality by 1/6(¢) and use (3.29), Holder’s inequality, and Young’s
inequality to prove

1

il D + G e O 124t )
Oln ?(t) 1 b

< m-ﬁammWMm—aAm%M@mx
C'35

B )(H (1) = )15 + luae (L OIF + 1G] D)

Integrating this inequality over time, and using (3.6), (3.38), (3.39), (3.36), and
(3.40), we observe that (3.50) is proved. The estimates in (3.51) follow by apply-
ing (3.9), (1.6), (3.32), (H4), and (3.17). O
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Lemma 3.10. There is a positive constant C3g such that
(3.52) | 0518 + I By ar <
Proof. Let J(z,t): Qo — R be defined by
(3.53)  J(z,t) = 5(x,t) + Holus, w](z,t) (5@) —0(z,t) + %nut(.,t)ng
+ /j(foo(f) — (&) d§) a.e. in €.

Using (3.11) two times, we get

(6(x, 1)) = pe(, )3 (2, 1) — pra(, )3 (2, 1)
=pe(z,t)J (2, 1) + (6(2,1) + paa(@,t))(0(2, ) — J(2,1))
— paa(z, )0 (2, t).

Integrating this equation over 2, and using Young’s inequality, (3.53), (3.29), and
(3.39), we observe that

@54 laColE < 5 [ pe 0T nde— [

ot
+ Car(|paa (- D)1 + 162, )||2+Hu(7t)|\2
+ () = foo (I

OJ(x,t) da

Applying (3.53), (3.10), (1.2), (H7), and (3.2), we observe that

(3.55) J(x,t) = Hilug, w](z,t) + Ho[ug, w](z, t)(I1(¢) + Io) + /136 foo(&) dE.

Hence, using (3.29), (3.38), (HT7), Holder’s inequality, Young’s inequality, (3.36),
(3.51), and (3.40), we get uniform bounds for J and, for all s > 0,

s s 2
- [ [ “mag/(wuwi+wﬂi))a<@&
0JQ 0 ot 5

Integrating now (3.54) with respect to time and using (3.16), (3.51), (3.40), (3.5),
(3.36), and (HT), we have shown the estimate for & in (3.52). Combining this estimate
with (3.11) and (3.51), we get the estimate for p;. O
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Lemma 3.11. Let ¢ € L% (0,00; H*()) N H}

loc

(0,00; L2(£2)) be the solution to
the parabolic initial-boundary value problem

(356) Ct — wa = &t a.e. in Qooa

Then we have a positive constant Csg such that, for all t > 0,
3/4
859 16CI < o1+ mas 106+ ([ 1a6iar) ).

Proof. Multiplying (3.56) by ¢, integrating over {2 x (0,T"), performing partial
integrations, and using (3.57), we get for all ¢ > 0

(359 ICCol3+ / G P2 dr

:/O/Q&t(I»T)C(SC,T)dJIdT
- /526(w’t)<(x’t)dm_/015/95(55’7')Ct(56,7)dxd7-.

Because of (3.10), (3.30), (3.40), and (H7), we have a uniform upper bound for
|6 (-, t)|lo. Hence, we get from (3.59) by applying Holder’s inequality, Young’s in-
equality, and (3.52) that

(360)  ScCol3+ / lGo(2 )3 dr < c(/ 1G( ||2dr)

Formally, we test (3.56) with (;, use (3.57), integrate over time, and apply Young’s
inequality to deduce that

t t t
o) [ 1GCDBdrIGEE< 5 [ a3 [ e

For a rigorous derivation of this inequality, one has to consider (3.56) with &; replaced
by some smooth approximation, perform this computation for the corresponding
solutions, and consider afterwards the limit.

Inserting (3.60) into the left-hand side of (3.61) and using (3.10), (1.2), (3.36),
Holder’s inequality, Young’s inequality, (3.29), (3.51), (H6), and (HT7), we observe
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that

1
(3.62) WHC('J)H% + 160l

/H Ml ] + OHalutg, w] + F)y(,7)[3 dr
< O+ Car o 1067 + O [ 073

Thanks to the Gagliardo-Nirenberg inequality (see below) and Young’s inequality,
we conclude that

1CC N2 < (CaallCa O NCCE OIS + Cas IS, 1))
< Cag(1+ [1GRIB + 11D
Now, we apply (3.62) and Young’s inequality to prove that (3.58) holds. O

The following version of the Gagliardo-Nirenberg inequality is a special case, more
general formulations can be found, e.g., in [3], [39].

Lemma 3.12 (Gagliardo-Nirenberg inequality). For all p > 1 there are positive
constants Cy7, Csg such that

(3.63) V]l < Carlloally T2 o]/ @+ + Cuslloll, Vv e HY(R).

Lemma 3.13. There is a positive constant Cy9 such that
3/4
B0 s O < oo 1+ o 19, + ( / o IBar) )

Proof. Let z1,2: Qs — R be the solutions to the parabolic initial-boundary
value problems

(3.65) Zit — Zize =0 ae.in Qo Vie {1,2},
(3.66) zi(1,t) = 2;»(0,t) =0 fora.e. t>0 Vie{l,2},
(3.67) 21(2,0) = ug 5(2,0), 22(x,0) =5(z,0) a.e. in Q.

Let z3: Qo — R be defined by

(3.68) =z3(x,t) = /j/oy z1(&,t) dfdy—&—/o (zo(z,7) + C(z,7))dT ¥V (2,t) € Qoo
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Recalling (3.65), (3.66), (3.67), (3.56), (3.57), and (H1), we observe that
(3.69) Zsp=21+20+C, Zsgz=21+2+(—6 ae in Q,
23(1,t) = 0= 23,(0,t) forae t>0, =z3(x,0)= /w u1(§)d¢ Ve Q.
1
Hence, we see that z3 is a solution to the linear parabolic initial-boundary value

problem considered in (3.11)—(3.13). Since p is the unique solution to this problem,
we have p = z3 a.e. on Q. Therefore, recalling u,; = p. and (3.69), we have

(3.70) Upt = 2300 =21 + 22+ (— 0  ae in Q.

Using (3.67), (H1), (3.10), (1.2), (1.6), (H6), and (HT7), we get uniform bounds
for z1(-,0) and 25(-,0). Applying the maximum principle for linear parabolic equa-
tions, we get uniform bounds for z; and z5. Because of (3.10), (H7), and (3.30), we
have

o < 050 + C519 a.e. in QOO

Thus, applying (3.70), (3.58), and Young’s inequality yields that (3.64) holds. O

Lemma 3.14. There is a positive constant Csy such that

t
(3.71) sup [0a(o7) 2 + / 16712 dr < Cro.
0

o<t

Proof. Testing (1.3) by 6, using (1.6), (H2), Young’s inequality, Holder’s
inequality, and (3.30), we see that

1 , 10 )
(3:72) 1013 + 5 102,03

1
< Glluze(o ) + o () = (Filua, ) 8) + 9 (1, 0C, 1)) 13
< Csslluae (O3 (luar (- D)I13 + 1+ 100, 1)]1%)

+ Csa(Fifua, )i (013 + Cosllgr (5 )13

+ Csollg2( O IZ10C, D)3

Integrating this equation over time, using (1.7), (H1), (H2), Holder’s inequality,
(3.50), (3.51), and (3.64), we see that

(3.73) /05||et<',t>||§dt+|oz<-,s>||§

< Cs7 + Css max ([uae (-, 1)]15 + 10¢, 1)113,)
0<t<s

3
s 1
< C59+CGO </ ||9t(,t)||gdt> +061 max ||9(,t)||go
0 0<t<s
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Thanks to the Gagliardo Nirenberg inequality and (3.5), we have
2/3 1/3 2/3
160G, )lloo < Conll0a (- )5 10C, )12 + CoallOC, D)l < Cos + Cos 16 (- D)5

Using this inequality to estimate the right-hand side of (3.73), and applying Young’s
inequality afterwards, we see that (3.71) holds. O

Lemma 3.15. There are positive constants Cgg, Cg7 such that

(3.74) %glz(H@(ut)lloo + luat (5 Ol + (5 8)lloo + [[wi - D)l[oo) < Cos,
(3.75) /0 (o (0113 + 196 O3 + 15: (¢, )]13) dt < Cer,

(3.76) /OOO(|Dl [ua (2, ), wlz, ))(B)] + [Defus(z, ), wlz, )|(#)]) dt < oo

for a.e. x € .

Proof. Using (3.39) and (3.71), we get the estimate for 6 in (3.75) and ap-
plying in addition (3.64) and (3.30) leads to the remaining estimates in (3.74). In-
voking (1.2), (1.5), (3.51), (3.74), (3.71), and (3.29), we get the estimates for o, and
;. Utilizing also (3.10), (H7), and (3.36), we derive the estimates for ;. Combin-
ing (3.35) and (3.50) and using Fubini’s theorem, we see that (3.76) holds. O

4. PROOF OF THE ASYMPTOTIC RESULTS

As in the preceding section, it will be assumed that (H1)-(HS8) are satisfied, and
that a solution (u, 8, w) to (1,1)—(1.7) is given, such that (2.22)—(2.25) holds.

For proving the asymptotic results in Theorem 1 and in Theorem 2 with an argu-
mentation similar to [33, Section 4], the following modification of [34, Lemma 3.1]
will be used. In the original formulation, it was assumed that the inequality in (4.1)
holds for all ¢ in the interval considered, but the proof in [34] can also be used if this
inequality holds only for a.e. ¢ in the interval considered.

Lemma 4.1. Suppose that y and h are nonnegative functions on (0, 00), with y’

locally integrable, such that there are positive constants A1, ..., A4 satisfying
(4.1) y'(t) < Ayy?(t) + Ay + h(t) for ae. t € (0,00),
(4.2) / y(t)dt < As, / h(t)dt < Ay.

0 0

Then we have tlim y(t) =0.
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Lemma 4.2. We have (2.27) and

(43) Jin lpa(, )]s = Jim flus( 51> =0,
(4.4) Jim |5, H)ll> = Jim flgufls = 0.

Proof. Testing (3.11) with —p,,, applying (3.12) and Young’s inequality, we
see that

10 1 1
550 P= (D12 + [Paa (5 )15 < S lpaa( )13+ 51555 for ave. t € (0,00).

Since u; = p, a.e. in O, we see by recalling (3.36) and (3.52) that we can apply
Lemma 4.1 to show that (4.3) holds. We have, by Young’s inequality,

0, . - - ~ -
Sl Iz = 2/90(17,15)%(:17,15) do < [[6(, )13 + 15e(-1)]3 for ae. t € (0,00).

Invoking (3.52), (3.75), and Lemma 4.1, we get the convergence result for & in (4.4).
Since (3.14), (3.10), and (H7) yield that ¢ = —&, we also have the result for ¢
in (4.4). Combining (4.4), (3.10), (H7), and the definition on Fu in (2.29), we
get (2.27). O

Lemma 4.3. We have

(45) Jim [pu(. D)l = Hm [pae(,0)ll2 = Jim uge(,8)]> = lim fue(-, 1) = 0.

Proof. Differentiating (3.11) with respect to ¢, testing it afterwards by p;, and
applying (3.11) and Young’s inequality, we see that

0 1 1.
Sl + Ipae )13 < 50,03 + 515 I for ave. t € (0,00).

Using (3.52), (3.75), and Lemma 4.1, we get the convergence result for p; in (4.5).
By (3.11), we can combine this with (4.4) to prove the convergence result for p,.,
in (4.5). Recalling also (3.9), we get the convergence result for u,; and using (1.6),
we obtain the result for wu;. O
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Lemma 4.4. We have
(46) Jim [0 (, )] = Jim [0, 2) — (1) | = 0.

Moreover, we have some constant 6, > 0 such that (2.30) holds.

Proof. Combining (3.72) with (3.74), we get for a.e. t € (0, 00)

10

5510 (Ol < sl (113 + 1(Frfuas 1)e (DI + g (5 IIZ + lg2(, £)113).

Because of (3.40), (3.50), (3.51), and (H2), we can now use Lemma 4.1 to get the
convergence result for 6,. Recalling (3.39), we obtain the result for # — . Combining
this with (3.38), we get some ¢y > 0 such that

1 —
6($,t> > 5017 Vre, t>t.

Moreover, (2.23) and (2.25) yield that @ is continuous and positive on Q x [0, %],
and therefore also bounded from below by a positive constant C’ on this set. Setting
0, := min(3C17,C"), we see that (2.30) holds. O

This completes the proof of Theorem 1.

Now, the additional convergence results in Theorem 2 will be proved.

Lemma 4.5. If G is the identity operator, then we have (2.32) and

(4.7) Jim [lwn(, )l = Jim (4 0)]l> = 0.

Proof. Testing the time derivative of (1.4) by w; and using Young’s inequality,
we see that for a.e. t € (0,00)

0 1 1
Gl 018 < [ i tn(o ) do < Sl 01 + Sl 01

Q
By assumption, we have w; = (G[w]):, and can therefore apply (3.51), (3.75),
Lemma 4.1, and (1.4) to show that (4.7) holds. Using now (H6)1iii) and (4.5), we get
also (2.32). O
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Lemma 4.6. Assume that H1 = Hz3 = F1 =0, 9 =0, and f = 0. Then, we
have

(48) 6(,1) — 160l + 52— urll3 as t — o0, in L(Q)
2CYy

and (2.34). If G is the identity operator then we have (2.35).

Proof. Thanks to the assumptions, (3.4), (3.10), (1.2), (H7), and (H5), we
see that Iy = 0, that Ip/Cy is equal to the right-hand side of (4.8), and that ¢ =
OHsa[uy, w]. Invoking (3.2), (4.5), (4.6), (4.4), and (H1), we get (4.8) and (2.34). If
G is the identity operator then it follows from (4.7), ¥ = 0H4[u,, w], and (4.8) that
(2.35) holds. O

Lemma 4.7. If (H9) holds then there is a uo, € W°(Q) such that (2.36)—(2.37)
hold.

Proof. Owing to (3.76) and (H9), we have a function eo.: € — R such that
(4.9) ug(2,t) — eo(x) as t — oo, for a.e. z €.

Invoking (3.17), compactness, and properties of weak-star and weak convergence, we
see that uz (-, t) — €0 ast — oo weakly-star in L. Defining now u () := foz €o0o(€)
and using (1.6), we conclude that u., € WH°°(Q) and (2.36)—(2.37) hold. O

Lemma 4.8. If (H10) holds then there is a wo, € L () such that (2.38) holds.

Proof. Thanks to (3.76), (H10), (3.17), compactness, and properties of weak
convergence, we get a weo € L() such that (2.38) holds. O

Hence, Theorem 2 is proved.
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