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WITH HYSTERESIS IN ONE-DIMENSIONAL 

THERMO-VISCO-PLASTICITY* 
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Abstract. The asymptotic behaviour for t —> co of the solutions to a one-dimensional 
model for thermo-visco-plastic behaviour is investigated in this paper. The model consists 
of a coupled system of nonlinear partial differential equations, representing the equation 
of motion, the balance of the internal energy, and a phase evolution equation, determining 
the evolution of a phase variable. The phase evolution equation can be used to deal with 
relaxation processes. Rate-independent hysteresis effects in the strain-stress law and also in 
the phase evolution equation are described by using the mathematical theory of hysteresis 
operators. 

Keywords: phase-field system, phase transition, hysteresis operator, thermo-visco-
plasticity, asymptotic behaviour 
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1. INTRODUCTION 

In this paper, an initial-boundary value problem for a system of partial differential 
equations involving hysteresis operators is considered, and the asymptotic behaviour 
of the solutions to this system is investigated. The system has been derived in [25] 
to model one-dimensional thermo-visco-plastic developments connected with solid-
solid phase transitions taking also into account the hysteresis effects appearing on 
the macroscopic scale as a consequence of effects on the micro- and/or mesoscale. 

To model such developments, one is considering the evolution of several quantities: 
the displacement w, the absolute temperature 0, and a phase variable w, which is 

*This work was supported by the Deutsche Forschungsgemeinschaft (DFG) by contract 
SP 212/10-3. 
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usually a so-called generalized freezing index, see [21]. For a wire of unit length, the 

evolution of these fields is determined by the following system: 

ьoo> (1-1) QUtt - uuxxt = ax + f(x,t) a.e. in QQ 

(1.2) a = H\[ux,w]+0H2[ux,w] a.e. in f&oo, 

(1.3) (CyO + T\[ux,w])t - K6XX = fiult + auxt + g(x,t,6) a.e. in .Qoo, 

(1.4) vwt = —ip a.e. in lOoo, 

(1.5) ip = H3[ux,w] + 9ri/\[ux,w] a.e. in lOoo, 

(1.6) u(0,t)=0, nuxt(l,t) + a(l,t)=0, 6x(0,t) = ex(l,t) = 0 a.e. in (0,oo), 

(1.7) u(-,0) = uo, ut(-,0)=u\, 0(-,O) = 0o, W(-,0) = WO a.e. in Q, 

with ftoo := ft x (0, oo) and Q := [0,1]. 

The equation (1.1) is the equation of motion, (1.3) is the balance of internal 

energy, and (1.4) is the phase evolution equation. By the constitutive law (1.2), 

the elastoplastic stress a is determined, and the constitutive law (1.4) defines the 

thermodynamic force ip. The boundary condition (1.6) means that the wire is fixed at 

x = 0, stress-free at x = 1, and thermally insulated at both ends. Here, x denotes the 

space variable, t denotes the time, and the indices x and t denote the differentiation 

with respect to space and time, respectively. 

The mass density g, the viscosity /x, the specific heat Cy, the heat conductivity K, 

and the kinetic relaxation coefficient v are supposed to be positive constants. The 

initial data for the displacement, the velocity, the temperature, and the phase vari­

able considered in (1.7) are denoted by tin, u\, 6Q, and tvo, respectively. Finally, the 

nonlinearities Hi, 1 ^ i ^ 4, and T\ are hysteresis operators (see below), where one 

needs to take into account ux(x, -)|[o,t] and u)(x, *)|[o,t] to compute 7ii[ux, w](x, t) and 

T\[ux,w](x,t). 

These operators are supposed to reflect some memory in the material on the 

macroscale, resulting from effects in the micro/mesoscale. Such effects can lead to 

hysteresis loops, as they are for example observed in the macroscopic strain-stress 

relation (e-a, where e = ux is the linearized strain) determined from measurements 

in uniaxial load-deformation of materials like shape memory alloys, see, e.g., [2], [4], 

[6], [7], [8], [9], [10], [30], [31], [38]. The curves show a strong dependence on the 

temperature, but many of them are rate-independent, i.e., they are independent of 

the speed with which they are traversed. 

There are other approaches to model hysteretic behaviour by considering systems 

similar to parts of (1.1)-(1.5), where the operators T\ and Hi, for 1 -̂  i ^ 4, are 

superposition operators. These models are derived by considering a free energy, 

which is a superposition operator, involving a potential which has (one or more) 

concave parts. The concave parts of the potential correspond to unstable physical 
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states, and these instabilities are supposed to produce the observed hysteresis effects. 
Such approaches have successfully been used and investigated in a number of papers, 
see, e.g., [3], [5], [7], [9], [33], [37], [39] and the references therein, but the modelling 
by non-convex free energies has its limits, since a non-convex part of the potential 
alone does not ensure that hysteresis loops are present, see, e.g., [29]. Moreover, the 
simple superposition operator cannot represent all the complicated hysteresis curves 
that axe observed in experiments. 

Hence, to describe such structures, the more general hysteresis operators have 
been introduced and used in a number of papers, see, e.g., the monographs [3], [14], 
[15], [36] on this subject and the references therein. For a final time T > 0, an 
operator H: C[0,T] -> Map[0,T] := {v: [0,T] -» IR} is a hysteresis operator if it is 
rate-independent and causal according to the following definitions. The operator ri 
is called rate-independent, if for every v G C[0, T] and every continuous increasing 
(not necessarily strictly increasing) function a: [0,T] -» [0,T] with a(0) = 0 and 
a(T) = T it holds that U[v o a](t) = U[v](a(t)) for all t G [0,T]. 

An operator ri: D(H) (C Map[0, T]) -> Map[0, T] is said to be causal, if for every 
vi,i>2 £ D(Wj and every t G [0,T] we have the implication 

(1.8) Vl(r) = V2(T) Vr G [0,*] =» ri[v,](t) = ri[v2](t). 

An example of a hysteresis operator is the stop operator, which is also called Prandtl 's 
normalized elastic-perfectly plastic element. To define the stop operator, we consider 
some yield limit r > 0, an initial stress ar G [—r,r], and a final time T > 0. For 
each input function e G W1A(0,T), we have (see, e.g., [3], [14], [15], [36]) a unique 
solution ar G Wlfl(0,T) to the variational inequality 

(1.9) <Tr(t)e[-r,r] V*G[0,T], ar(0) = a°r, 

(1.10) (et(t) - ar,t(t))(ar(t) - rj) > 0 Vr) G [-r,r], a.e. in (0,T). 

This defines the stop operator Sr: [-r,r] x W^faT) -> JV M (0 ,T) : (a^,e) •-> ar. 
An example for the evolution of the input and the output for the stop operator 
is presented in Fig. 1, showing the input-output relation of <S2[0,e] for an input 
function e which initially increases from 0 to 5, then decreases to —6, then increases 
to 0, then decreases to —3, and finally increases to 6. 

Connected with the stop operator Sr is another important hysteresis operator, the 
so-called play operator Vr defined by 

(1.11) Vr: [-r,r]xW^(0,T) ^W^(0,T): (a°r,e) ^ e - Sr[a°r,s]. 

It is well-known, see, e.g., [3], [14], [15], that the stop and the play operator can be 
extended to Lipschitz continuous operators on [—r,r] x C[0,T]. Moreover, using the 
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Figure 1. An example for the evolution of (e(t),S2[0,e](t)), starting in S = (0,0) and 
finishing in F = (6,2). 

notation of [3, Chapter 2.5], one has for all ar G [—r, r] that ^Sr[ar, •] is the clockwise 
admissible potential and rVr[or, •] is the corresponding dissipation operator for the 
operator Sr[a^, •], i.e., for all e G W^l(0,T) it holds that 

(1.12) Q<Sr
2[a°r,e]^ + \(rVr[a°r,e])t\ = Sr[o°r,e]et a.e. in (0,T). 

Let Map[0,oo) := {v: [0,oo) -> R}. An operator U: D(U) (C Map[0,oo) x 
Map[0, oo) —> Map[0, oo) is said to be causal, if for every (ei,wi), (e2,w2) G D(Wj 
and every f ^ O w e have the implication 

si(r) = e2(r), WX(T) = w2(r) Vr G [0,t] => ri^w^t) = ri[s2,w2](t). 

Moreover, the operator H generates an operator 7i mapping (e,w) with e,w: ft x 
[0,oo) -> R such that (£:(x, -),w(x, •)) G ̂ (W) for a.e. x G fJ to the function on fi x 
[0,oo) defined by H[e,w](x,t) = U[e(x, -),w(x, -)](t) for all ^ 0 and for a.e. x G SI. 
In the sequel, we will no longer distinguish between W, and the generated operator H. 

The hysteresis phenomena described by hysteresis operators are often related to 
changes between different configurations within the wire. In the system above, these 
configurations are described by the phase parameter w, and the evolution of these 
configurations is described by the phase evolution equation (1.4). By considering such 
an equation, one can take into account relaxation processes that appear in addition to 
the rate independent hysteresis loops, which are modelled by the hysteresis operators. 

Let us recall some results for systems with hysteresis operators similar to the one 
above. In [11], [17], [20], [21], [23], [26], [27], a multi-dimensional phase transition 
is considered without taking mechanical effects into account. This corresponds to 
investigating (1.3)-(1.5) without a dependence on u or a. The one-dimensional 
thermoelastoplastic hysteresis without considering relaxation processes in the phase 
transition, i.e., (1.1)-(1.3) with no dependence on w, has been studied in [16], [18]. 

312 



For the complete system (1.1)—(1.7) above with an additional Ginzburg term uxxxx 

on the left-hand side of (1.1) and boundary condition u = uxx = 0 on dft for u, the 
global existence and uniqueness of a solution has been shown in [24]. 

The system (1.1)—(1.7) has been derived and investigated in [25]. Therein, the 
existence, uniqueness, and regularity of a strong solution has been proved (see Theo­
rem 3 in Section 2.3), and it has also been shown that the Clausius-Duhem inequality 
and therefore the second principle of thermodynamics is satisfied for the solution. 

In the present work, we are dealing with the asymptotic behaviour for t —•• oo 
of the system under consideration. After discussing the assumptions in Section 2.1, 
the results are presented in Theorem 1 and Theorem 2 in Section 2.2. The a priori 
estimates derived in Section 3 are used in Section 4 to prove these theorems. 

2. ASYMPTOTIC BEHAVIOUR OF SOLUTIONS 

2.1. Assumptions 
The assumptions used in the investigation of the asymptotic behaviour of the 

solution to (1.1)—(1.7) are now presented and discussed. Let C[0, oo) denote the set 
of all continuous functions from [0, oo) to R, including also the unbounded ones. For 
t^O, the seminorm | • |[0jtj on C[0, oo) and on C[0,T] for T ^ t is defined by 

(2-1) l / l [ M = m - l / ( S ) | . 

We will use the following assumptions: 

(HI) We have u0 e H2(Q), u± E W^°°(n), 90 e Hx(ft), w0 e Hx(ft), and there is 
some S > 0 such that 60(x) ^ S for all x £ ft. Moreover, the compatibility condition 
tio(0) = u\(0) = 0 is satisfied. 

(H2) We assume that g: ft x (0, oo) x (R -» IR is a Caratheodory function such that 
there are functions g\,g2: ftoo -> [0, oo), with 

9l e L^noojnL^noo), g2 e L ' ^ o o j L ^ ^ ^ n L ^ o ^ j L 0 0 ^ ) , 

\g(x,t,s)-gi(x,t)\^g2(x,t)s, g(x,t,-s) = gi(x,t) V(x,t) G n ^ , s ^ 0. 

(H3) The operators Hu • • •, ^4 , T\: C[0, oo) x C[0, oo) -•> C[0, oo) are causal and 
m a P w\ol (°> °°) x Wioc (°> ° ° ) i n t o W\ol (°»°°)- T h e operators map C[0, T] x C[0, T] 
continuously into C[0, T] for all T > 0, and for all e, w E C[0, oo) 

Ti[e,w](t)^0 V i ) 0 . 
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(H4) There exist causal operators .F2: W^(0,oo) x Wlo'c (0, oo) -> w/^O.co), 
A , P 2 : < ' c (0 ,oo ) x w.^O.oo) -> 2^ (0 ,00 ) , <?: Wj^O.co) -> W£!(0,oo), and 
a non-decreasing function &i such that for all e,w G Wjj^O, oo) 

i) |X>i[e,w]|=e tWi[e,H+ a.e. in (0,oo), 

\V2[£,w]\=£tH2[E,w) + (g[w])tH4[e,w}-(T2[e,w))t a.e. in (0,oo) 

ii) l ( ^ M ) t W | 2 ^ ^ i ( k | [ o , t ] H W ( ^ M ) t W fora.e. *G(0,oo). 

(H5) We have -Fi,o,^2,o € L 1 ^ ) such that for all _,«; € VV1
1
o'c

1(0,oo;L2(_l)) with 
e(-,0) = i_o,x and w(*,0) = w0 a.e. on _1 it holds that 

_Fi[e,w](-,0) = _Fij0, T2[e,w](',0) = .F2,o a.e. in f_. 

(H6) There are non-decreasing functions k2,k%, k4: [0, oo) -» [0, oo) such that for all 
£,io G C[0, oo) 

i) max \Hi[e,w](t)\ ^ k2(\e\m + |iD|[0)t]) Vt ^ 0. 
l ^ t ^ 4 

ii) -_-_[_,«;](-) < *s(|e|[o,t] + H [0>t])(l +.^i[e,«>](*)) V* ^ 0. 

iii) If s, w € W7,̂ 1 (0, oo) then 

max |(7__[e,_o]).(*)| + \{Fi[e,w])t(t)\ 
l < i < 4 

^ fc4(k|[0,t] + M[o,t])(kt(*)l + v W O ( 0 M M * ) ) for a-e. t G (0,oo). 

(H7) We have / G L°°(0,oo;L2(-l) and there exist functions /oo G L2(_l), F G 
L ^ o o j i J 1 ^ ) n H1(0,oo;L2(f_) n L°°(_loo), and positive constants K0, Kx such 
that 

/ - / o o e L 1 ( 0 , o o ; L 2 ( n ) , F(x,t)= f /(£,*) df for a.e. (x,t) G -loo, 

(2.2) | | / o o | U i ( n ) k ( O I ^ ( l - ^ o ) | ^ i [ c , H W I + ^ i Ve,wGC[0,oo), ^ 0. 

For the formulation of the remaining assumptions, we use the following notations, 
which are well defined by (HI): 

(2.3) £o,min :=min{i_0,xOz): x G H}, e0,max := max{i_0,x(z): x G ft}, 

(2.4) ivo,min :=min{?Do(^): x G ft}, ivo.max := max{w0(x): x G _!}. 

(H8) For each SA > 0, there exists e_ ^ e0,min, £+ _£ £o,max, U>A > 0, w- ^ w0,min, 
and iv+ ^ w;o,max such that for all e, w G C[0, oo) and all £ ̂  0, 
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i) I f e (* )^e+ , 

(2.5) €:0,min ^ ( 0 ) ^ £0)max, E- - SA ^ ^(T) ^ £+ + €A V r G [0,t], 

(2.6) Wn.min ^ ^ ( 0 ) ^ Wfj.max, W- - W& ^ W(T) ^ W+ + WA VT E [0,t], 

hold then we have 

(2.7) ni[e,w](t) > IIFULoo^), li2[e,w](t) ^ 0. 

ii) If e(t) ^ e_, (2.5), and (2.6) hold then we have 

(2.8) nx[eM(f) < - I I ^ I I L - ^ ) , n2[e,w](t) ̂  0. 

hi) If w(t) ^ w+, (2.5), and (2.6) hold then we have 

(2.9) rl3[s,w](t) ^ 0, rl4[e,w](t) ^ 0. 

iv) If w(t) ^ W-, (2.5), and (2.6) hold then we have 

(2.10) n3[e,w](t) ^ 0, rtA[e,w](t) ^ 0. 

(H9) For every e,w G Wj^O, oo) with e and w bounded and 

/•OO 

/ (|p![e,u;](t)| + \V2[e,w](t)\)dt < oo, 
Jo 

there exists £QO G R such that lim e(t) = £oo. 
t—)-oo 

(H10) For every £, it; as in (H9), there exists w^ G R such that lim w(£) = ivoo-
t—>oo 

Before the asymptotic results will be presented in Section 2.2, the above assump­
tions are discussed, starting with considerations concerning relations to the physical 
background. 

R e m a r k 2.1. Thanks to (HI), there is a positive lower bound for the initial 
temperature and the lower bound for g in (H2) ensures that this function does not 
model any further cooling at absolute zero. Considering the free energy T, the 
entropy <S, and the internal energy U as in [25], i.e. 

T[є,w, ] 

S[є,w, ] 

U[є,w, ] 

= CV0(1 - ln(0)) +Ti[e,w] + 0T2[e,w], 

= Cv0-T2[e,w], 

= Cv0 + Ti[e,w], 

315 



the lower bound for T\ in (H3) yields that the internal energy is nonnegative. More­
over, the nonnegativity of the expressions on the right-hand sides of the equations 
in (H5)i) is combined with (H5)ii) to prove that the system (1.1)-(1.7) is thermo-
dynamically consistent, see [25, Remark 3], The functions V\ and V2 arising in (H4) 
are related to the energy dissipation during a hysteresis loop. 

R e m a r k 2.2. There are cases where the operators Hi are decoupled. For exam­
ple, the model for phase transition without mechanical effects as studied in [11], [17], 
[20], [21], [23], [26] can be combined with the model considered in [16], [18], that is 
the thermoelastoplastic hysteresis model without relaxation processes. In that case, 
if one does not take into account any direct coupling between phase transitions and 
mechanical effects, but only a coupling via the energy balance, one ends up with the 
system (1.1)—(1.7) with H\ and H2 depending only on ux, and Hz and H4 depend­
ing only on w. Moreover, one is sometimes dealing with hysteresis operators arising 
as the sum of a superposition operator and some well-known hysteresis operator. 
Hence, we will investigate decoupled Hi of this form. Considering causal operators 
H\,... ,H/\: C[0,00) -r C[0, oo) and nonnegative functions h\,...,h4 G C2(R), we 
can define the operators H\,...,H4 by setting, for all e,w G C[0,oo) and all t ^ 0, 

= {h'i{ . 9 1 1 . w f , , , , .~'Mt))+iU[e)(t) fort = 1,2, 
(2.11) Hi\e,w\(t) := < 

1 ' %{w{t))+ni[w\{t) for t = 3,4. 

For 1 -̂  i ^ 4, we assume that we have a clockwise admissible potential and the 
corresponding dissipation operator for Hi, i.e. (see [3, Chapter 2.5]), we assume that 
we have a causal operator fc. C[0,oo) —> C[0, oo) which is mapping Wj)̂ 1 (0,00) in 
Wioc(0> °°) a n d a causal operator V{: W{oc

l(0, oo) -•> Lloc(0, oo) with 

(2.12) \Vi[v]\ = vtHi[v]-(fi[v])t a.e.in (0,oo), Vti € ^ [ 0 , 0 0 ) . 

Then (H4) holds with Q being the identity and T\,T2,V\, V2 defined by 

(2.13) T5[e,w](t) := h5(e(t)) + fj[e](t) + hj+2(w(t)) 4- fj+2[w](t), 

(2.14) VfeMV) ~ l^iHWI + \Vj+2[w](t)\, 

for a l l e g e C[0,oo), t^ 0, and j e {1,2}. 
If h\(r) = h\r2 with some positive constant h\ then the corresponding operator H\ 

models a linear elasticity with a hysteretic modification. 

R e m a r k 2.3. A sufficient condition for (H8) to be satisfied is that the two fol­
lowing assumptions (Hll) and (H12) hold. These assumptions are especially useful, 
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if the operators /H\,...,H\ are decoupled as in the Remarks 2.2, 2.5-2.6. The no­
tation of an outward pointing operator used in these assumptions is introduced and 
discussed in [13]. 

The more general formulation in (H8) is helpful, if the operators are coupled, 
e.g., if they are derived from multi-dimensional stop or Prandtl-Ishlinskii operators 
(see, e.g., [15], [21], [22], [23]). 

(Hll) For each e& > 0, there exists e_ ^ £o,min and £+ ^ £o,max such that 
for all w G C[0,oo) with wo,min < w(0) ^ wo,max the operator mapping e G 
C[0,oo) to H\[e,w] G C[0,oo) is pointing outwards with bound H-FIU^n-,) in the 
e/^-neighbourhood of [e_,e+] for initial values in [£o,min,£o,max] and that the same 
holds for H2 just with bound 0, that is to say for all e G C[0, oo) and all t ^ 0 holds: 

i) If e(t) ^ e+ and (2.5) hold then we have (2.7). 
ii) If e(t) ^ e- and (2.5) hold then we have (2.8). 

(H12) There are w& > 0, w- ^ wo,min, and w+ ^ it>o,max such that for all 
e G C[0, oo) with £o,min ^ £(0) ^ £o,max the operators C[0, oo) 3 w .-•» H3[e,w] 
and C[0, oo) 3 w i-> HA{£,W] are pointing outwards with bound 0 in the w&-
neighbourhood of [iu_,i(/+] for initial values in [wo,min, wo,max], that is to say for all 
w G C[0, oo) and t^Oit holds that: 

i) If w(t) ^ w+ and (2.6) hold then we have (2.9). 
ii) If w(t) ^ w- and (2.6) hold then we have (2.10). 

R e m a r k 2.4. If we use H3 = H4 = 0 in Remark 2.2 then Hz and HA are 
superposition operators and the assumption (H12) holds if and only if there are 
uLA > 0, w- < woiTn[n, and w+ ^ Wo,max s u c n that 

• For all 5 G [w+,w+ + if A] holds h'3(s) ^ 0, h'A(s) ^ 0. 
• For all s < [w- - w&,w-] holds h3(s) ^ 0, h'4(s) ^ 0. 

A similar condition has been used in [1], [32], [33]. If this condition is directly adapted 
to hysteresis operators, one ends up with an assumption similar to (H12), but with 
the condition (2.6) replaced by w_ — w& ^ w(t) < w+ + WA only. This assumption is 
stronger than (H12) and will be denoted by (H12+). There are important hysteresis 
operators satisfying (H12), but not (H12+). 

In a similar way, one can consider a stronger version (H11+) of (Hll), where 
£- — £A ^ e(t) ^ £+ + £A is used instead of (2.5). 

R e m a r k 2.5. If for the functions and operators in Remark 2.2 there are positive 
constants K2yl,..., K2,A such that 

(2.15) |WiH(*)l < K*,i V ř > 0. v € C[0,00), 1 < i ^ 4, 

(2-16) ±rUmofc'1(r) > K2,i + \\F\\L-{QBB), 

(2-17) ± lim tíj{r)>K2,i V 2 ^ j < 4 , 
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then the assumptions (H11+) and (H12+) are satisfied. Hence, (Hll) , (H12), and 
(H8) hold. Moreover, the condition (2.2) in (H7) is satisfied if the other assumptions 
in (H7) hold. 

R e m a r k 2.6. For 1 ̂  i ^ 4, we consider a nonnegative weight function <pi G 
L ^ o o ) and a function a0 G PV1'oo(0,co) such that of (r) G [-r,r] for all r ^ 0, 
|(of ) r | ^ 1 a.e. on (0, oo), and cr°(r') = 0 for all r' ^ Ri for some R{ > 0. Moreover, 
we consider yield limits r^j G IR, initial values of • G [—Uj, r»-j], and weights <pij > 0. 
Now, we define Hi: C[0, oo) -> C[0, oo) as the Prandtl-Ishlinskii operator 

(2.18) Ui[v]:= / iPi(T)Sr[G0i(r)M^^y^ip^SriyijM VuGC[0,oo). 
J° 3 

The more general definition of this operator involing a Stieljes integral, see, e.g. [15], 
would allow to write this sum as one integral. A clockwise admissible potential for 
this operator is defined by Ti: C[0, oo) -» C[0, oo) with 

-i /»oo 1 

(2.19) Hv] :=-jo V>.(r)5?[a?(r),t;]dr + - ^ W X , ) [ ^ . « ] 

for all v G C[0, oo) since Proposition 2.5.5 in [3] and (1.12) yield that (2.12) holds 
for 

(2.20) Vi[v]~ Ujf ripitfPrtfMto +^Vi,i\(r'Pr[<%j,v])t\ 

for all v G W^[0,oo). Defining now Tii and Ti as in Remark 2.2, and using well-
known properties of the stop operator one can show that (H3)-(H6) hold. 

Since for oscillations that are smaller then the yield limit of a play operator, the 
operator stays constant after the first oscillation, we can apply (2.14) and (2.20) to 
deduce that (H9) holds, if and only if for all s > 0 the function y>\ + ip2 does not 
vanish a.e. on [0, s]. For (H10), we get an analogous condition, just with </>i + <p2 

replaced by <D3 + (D4. If one wants to ensure as in Remark 2,2 that (Hll) and (H12) 
are satisfied, one has to require that 2.15 holds, which is equivalent to the condition 

t-00 

(2.21) / npi(r) dr + V <Pi,jritj < K2ii < +oo V1 < % ^ 4. 

If this condition is satisfied, we see that (Hll) and (H12) hold for appropriate func­
tions hi, but this argumentation can not be applied if Hi = Hi for some i G {1 , . . . , 4} . 

In [13], it is proved that (H12) holds for H3 := H3 and 7i4 := TTU, independently 
of (2.21). Moreover, it is shown there that for 7i\ := Hi the condition in (Hll) 
holds if and only if /0°° ripi (r) dr = oo, and that an analogous equivalence holds for 
l~i2 : = 1~L2. 

3 1 8 



2.2. The asymptotic result 
The following two theorems are the main result of this paper: 

Theorem 1. Assume that (H1)-(H8) are satisfied. Moreover, assume that 
(u,9,w) is a solution to (1.1)-(1.7) such that 

(2.22) u e H?oc(0, oo; L2(Q)) n ^ ( 0 , oo; H2(il)), 

(2.23) 9 e HUO, OO; L2(il)) n L2
OC(0, oo; H2(il)), 

(2.24) w e H2
OC(0, oo; L2(il)) n # l o c(0, oo; H2(Q)), 

(2.25) 6(x,t)>0 V i e H , t > 0 . 

Then, it holds that 

(2.26) Urn \\uxt(;t)\\L2{Q) = 0, Hm \\ut(;t)\\c(n) = 0, 

(2.27) a(;t) - • -Foo as t ->• oo, in L2(Sl), 

(2.28) Hm \\ex(; t)\\LHil) = 0, Hm \\0(; t) - 0«llC(Q) = 0, 

with 

(2.29) Foo(x) := f foo(0^, 0(t) := f 0(y,t)dy V ^ G f i , ^ 0 . 
Ji JQ 

In addition, we have a constant 0* > 0 such that 

(2.30) 6(x, t) > (9* Vx e n, t^ 0. 

R e m a r k 2.7. We see that (2.26) yields that for t -> oo the viscous part of the 
stress tends to zero, and by (2.27) the stress tends to —Foo, which is the potential 
corresponding to the limit /oo for f —> oo of the applied force / . Moreover, by (2.28), 
we see that the temperature becomes more and more uniform in space. It is an 
open questions whether one can show convergence for 9, ux, or w under the general 
assumptions of the theorem or if oscillations can appear up to t —» oo. 

Also in [33], where the system (1.1)-(1.3) with Hi, 7i2, and T\ just being non­
linear superposition operators of ux has been considered, convergence for 6 and ux 

could only been proved by using additional assumptions. Corresponding additional 
conditions are required here in part b) and c) of Theorem 2 below, and allow to show 
the convergence of the temperature for t —> oo. If, in addition, % and 7̂ 4 are spe­
cial operators, like, e.g. stop operators, one could also show some convergence for u 
and w, by adapting the argument in [33, Lemma 4.5] to the more general situation 
considered here. 
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Now, convergence results are presented that can be proved using additional hy­
potheses. 

Theorem 2. Assume that the assumptions of Theorem 1 are satisfied, 
a) If Q is the identity operator, then we have 

(2.31) lim K(-,t)||L>(n) = 0, lim | |^(-,t) | |L2 (n ) = 0, 
t->oo v ' t—•oo v ' 

4 

(2.32) Bm \\(T\[ux,w])t(;t)\\L2{Q) = ^ t | i m ||(W.i[tix,ii;])t(-,*)llL»(n) = 0 . 
°° i=i °° 

b) IfH\ = rl3 = T\ = 0, g = 0, and / = 0, then we have 

(2.33) *(•,*)->ll*o||Li(n) + 2^:l | t«i | l i (n ) as t -> oo, in L~(n ) , 

(2.34) l\m\\n2[ux,w)(',t)\\L2{n) = 0. 

c) If H\ = % = T\ = 0, g = 0, / = 0, and Q is the identity operator, then we 
have 

(2.35) lim \\ri4[ux,w](;t)\\L2{Q) = 0. 
t -»oo v ' 

d) If (H9) holds then there exists a i/oo € W 1 ' 0 0 ^ ) such that 

(2.36) u(-,t) -> Woo as t -» oo, weakly-star in W1 , 0 0(n), 

(2.37) W.T(*,0 -> Woo,x as t —> oo, a.e. in fi. 

e) If (K10) holds then there exists a Woo G L°°(n) such that 

(2.38) w(-,t) -> tvoo as t -» oo, weaJdy-star in L°°(n) and a.e. in il. 

R e m a r k 2.8. If (H8) does not hold then one can still prove the results in The­
orem 1 and some of the results in Theorem 2, if some other additional assumptions 
are satisfied. 

i) If (H4) and (H6) with k\,..., k4 replaced by positive constants hold then one 
can still show the results in Theorem 1 and the results in Theorem 2 a)-c) hold, 

ii) If (Hll) , (H4) ii) with k\ replaced by a positive constant, and (H6) without the 
|w|[0jt]-term in the evaluation of &2, &3, k4 hold then one can prove that the 
results in Theorem 1 and the results in Theorem 2 a)-d) hold, 

iii) If (H12) and (H6) without the |e|[0)t]-term in the evaluation of &2, &3, k4 hold 
then one can prove the results in Theorem 1 and the results in Theorem 2 a)-c) 
and e) hold. 
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2.3. Existence of solutions 
Before proving the asymptotic result, it will be recalled that there is a solution 

to the problem under consideration satisfying the regularity and positivity demands 
presented in Theorem 1, at least if some additional assumptions are satisfied. These 
assumptions will be 

(H13) / 6 t f k ( 0 , o o ; L - ( n ) ) . 

(H14) The function g\ arising in (H2) satisfies gi G Lj^c(lQoo) and for every T > 0 
there is a positive constant K3tT such that \dg/dO\ ^ K3IT a.e. in Q x (0,T) x R. 

(H15) For every T > 0 there are positive constants K^T, •. •, -KV.T and non-
decreasing functions k^T, k$yT - [0, oo) -» [0, co) such that for all e,er, £2, W, w\,w2 G 
C[0, oo) the following holds: 

i) We have for all* G [0,T]: 

\H2[eM(i)\ + \ri4[eM(t)\^K4,T, 

max \Hi[£i,w\](t) - Ui[e2,w2](t)\ < K^T(\e\ - e2|[0,t] + |™i - t i ^ L a ) . 
l^i^4 

ii) If e,€i,62, w, w\,w2 G W^(0, oo) then the inequality in (H4) ii) with k\(|w|[o,t]) 
replaced by A^ .T n o-ds for a.e. t G (0,T) and 

max \(Hi[e,w])t(t)\ ^ K7iT(\et(t)\ + \wt(t)\) for a.e. t G (0,T), 
l< i<4 

(2.39) | ^ i M ) t ( * ) l ^ *5,T(kl[o,t] + M[o,t])(kt(*)l + \Mt)\) 

fora.e. te (0,T), 

(2.40) |Ji[ci,ti;i]W -.Fi[e2 , t i*](0 

^ fcft,r(|ei|[o,t] + M[o,t] + M[o,t] + K|[0 ,t]) 

x ( | c i ( 0 ) - e 2 ( 0 ) | + | t i ; i (0 ) - t^ (0) | 

+ / (ki,t(r) - c2ft(r)| + k i , t ( r ) - i^2 , t(r) |)drj 

V*G[0,T]. 

One can extend Theorem 2.1 in [25] to the following result: 

Theorem 3. Assume that (H1)-(H3), (H4) i), and (H13)-(H15) are valid. Then 
the system (1.1)-(1.7) has a unique strong solution (u,0,w) such that (2.22)-(2.24) 
hold. This solution also satisfies (2.25). 

The original existence result in [25] has been formulated with a stronger version of 
the assumption (H15), where fc5,T(* * •) in (2.39) and A;6,T(- • ) in (2.40) are replaced 
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by positive constants. Combining this stronger assumption with (H4) i) and the con­
tinuity of Ti on C[0,T] x C[0,T] (see (H3)), it follows that U\ and H3 have to be 
uniformly bounded. However, uniform boundedness is not satisfied in many impor­
tant situations, e.g., if 7i\, defined as in (2.11), is modelling a linear elasticity with 
a bounded hysteretic modification as in Remark 2.2. Using the assumption (H15) 
allows to apply the existence result above also in this situation. In [24], the au­
thors of [25] consider a hypothesis analogous to (H15) for a modified version of the 
system (1.1)-(1.7). 

We now sketch the proof of Theorem 3: We observe that, in the global existence 
proof in [25], the stronger versions of (2.39) and (2.40) are applied after the uniform 
estimates for ux and w have been derived. To perform the a priori estimates, it 
suffices to use just (2.39) and (2.40). Moreover, (2.39) and (2.40) also suffice for the 
local existence result in [25, Section 3], as can be seen from a careful examination 
of the proof. Details can be found in the forthcoming paper [12]. Therein, it is also 
shown that one can replace the boundedness of H2 and U4, as assumed in (H15) i), 
by the hypothesis for T2 in (H6) i). One is then able to consider the case where one 
assumes (Hll) for % consisting of Prandtl-Ishlinskii operators depending only on e. 
In this case, % is unbounded, see Remark 2.6. 

R e m a r k 2,9. For nonnegative functions / i i , . . . , / i 4 £ C2(IR) with h",h'3' G 
L°°(IR), h'2, h'4 e VV1 '00^), and operators Ux,..., UA as in Remark 2.6 with nonneg­
ative weight functions <pi,..., <p4 € Ll(0,00) satisfying (2.21) one can use well-known 
properties of the stop operator (see, e.g., [3], [14], [15], [36]) to show that (H15) holds. 

3. UNIFORM A PRIORI ESTIMATES 

In this section, it will be assumed that (H1)-(H8) are satisfied and that a solution 
(u,0,w) to (1.1)-(1.7) is given, such that (2.22)-(2.25) hold. To prepare the proof of 
the asymptotic results in the next section, some a priori estimates are derived that 
are uniform with respect to time. 

Before this is done, we consider the energy balance and derive an immediate 
consequence: 

R e m a r k 3.1. Multiplying (1.1) by ut and adding the result to the balance 
law (1.3) for the internal energy, we get the balance law for the energy 

(3.1) I Cv6+ -u\ +Ti[ux,w] J - K9XX = (ut(uutx+a))x+g + utf a.e. in fioo-
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For t > 0, we integrate this equation over ft x (0,t), and use Green's formula, (1.6), 
(1.7), (HI), and (H5), to show that 

(3.2) Cvm + ^\\ut(-,t)\\
2

LHQ)=h + h(t) V t ^ O 

holds for the 0 defined in (2.29), 

(3.3) Jo := Cv\\0o\\mn) + §IK| | L 2 ( Q ) + J T^(x) dx > 0, 

(3.4) h(t):= [ ( (g(x,T,6(x,T))+ut(x,T)f(x,T))dxdT 
JOJQ 

- / (Fi[ux,w](x,t))dx V l j>0. 
JQ 

In the sequel, for 1 -̂  p < oo, the notation || • ||p will be used as an abbreviation for 
the Lp(ffc)-norm, and || • ||oo will denote the C(ft)-norm, i.e., the maximum norm on ffc. 
Moreover, C{, for i G N, will always denote generic positive constants, independent 
of time, space, and the considered solution. 

Thanks to (2.22)-(2.25) and (H3), we can assume without losing generality that 
a ancj xj; are continuous (maybe unbounded) functions on ftoo = ft x [0, oo), such 
that (1.2) and (1.5) hold for all (x,t) G Hoo- Because of (1.7), (2.3), (2.4), we can 
apply the assumption (H8) for e(-) := ux(x, •) and w(-) := w(x,-). For the sake 
of notational convenience, we assume in the remaining part of this section without 
losing generality that g = p = Cv = K = V = \. 

In the following estimates, some ideas from [25], [33], [35] are used. 

Lemma 3.2. There are two positive constants C\, C^ such that 

(3.5) sup(||0(-,*)lli + IM-,*)ll2 + \\Fi[uxM(->t)\\i) ^ Cu o^t 
/•oo 

(3-6) / (||ff(-,.,fi(-,0)lli + ll»(-,.,«(-,*))ll?)<l*<C'a. 
JO 

P r o o f . Let 

(3.7) *(*):= [ (Fi[ux,w](x,t) - foo(x)u(x,t) + Kx)dx Vr ^ 0. 
JQ 
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Now, we get from (3.2) by using (2.29), (2.25), (3.3), (3.4), Holder's inequality, 
Young's inequality, (HI), (H2), (H5), and (H7) that for all * > 0 

(3.8) (||«(-,t)lli + |ll«.(-,*)lll{+ *(*)) 

<C*+ [\\\g2(-Moo\\e(-,T)\\1+\\g1(-,T)\\1)dT 
JO 

+ £ j f (II/O.T) - /oo||2 + ||/(-,r) - /00II2 lk(-,r)||l)dr. 

By (3.7), Holder's inequality, (1.6), (H3), and (H7), we have 

*(*)^/fo||Jri[t-«,w](-,*)||i V ^ O . 

Hence, because of (3.8), we can apply Gronwall's Lemma, (H2), and (H7) to show 
that (3.5) and (3.6) are satisfied. • 

To prepare the following estimates, we now consider the transformation due to 
Andrews [1], which is also used, e.g., in [32], [33], [25], and introduce functions 
p,q,o: floo -* K that are defined by 

(3.9) p(x,t):=f tit(f,t)d£, q(x,t):=ux(x,t)-p(x,t) V0r,*)eOx>, 

(3.10) &(x, t) := o(x, t) + F(x, t) V(x, 0 € Hoo, 

with F as in (H7). Recalling (1.1)-(1.7) and (H7), we see that 

(3.H) pt -Pxx—o a.e. in ftco, 

(3.12) p(l,t) =px(0,t) = 0 a.e. in (0,T), 

(3.13) p(x,0)= f t i i (0df a.e. in ft, 

(3.14) qt = -o a.e. in ft, 

(3.15) q(x,0) = u0iX(x) - / wi(0 df a.e. in ft. 

Lemma 3.3. There are positive constant C4, C5 such that 

(3A6) sup(||px(-,t)||2 + ||p(-,*)lloo) < <?4, 
0<t 

(3.17) SUP(||ux(.,*)||oo + IK-,«)lloo + ||fi(-,t)lloo + k(-,*)lloo) ^ Q>. 
O^t 

Proo f . In the light of the estimate for ut in (3.5) and the definition of p in (3.9), 
we see that (3.16) holds. Considering (H8) for SA -= 2C4 + 1, we get e_ < £o,min, 
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£o,max < e+, w- < wo,min, and w+ > ^o,max such that the remaining conditions 
in (H8) are satisfied. Now, 

(3.18) ux(x,t) e [e- -2C4,e+ +2C 4] , w(x,t) e [w-,w+] V (x,t) e ft«> 

is proved by contradiction. Suppose that (3.18) does not hold. Then there is some 
S e (0, min{wA, 1}) such that ux ^ s_ - 2C4 - S and/or ux ^ e+ + 2C4 + S and/or 
«/ -̂  w- — S and/or w ^ w+ + S somewhere in ftoo. We have ux(x,0) = u0yX(x) e 
[£_,£+] and w(x,0) = Wo(x) e [w-,w+] for all x e ft because of (2.3) and (2.4). 
Since (2.22) and (2.24) yield that w and ux are continuous on ft^, we get x\ e ft, 
h > 0 such that 

(3.19) { ux(xi,h) Є {є 

and/or w(x\,i 

[e- - 2C4 - S,e+ + 2C4 + 6} 

,h) e {w+-\-S,w- -S}, 

(3.20) e--2C4-S< ux(x,t) <e++2C4 + 6 Vt e [0,h), x eH, 

(3.21) e--2C4-S^ux(x,h) ^£++2C4 + 6 Vx _ft, 

(3.22) w- - S < w(x, t) < w+ + S Vte[0,h), x e ft, 

(3.23) w- -S ^w(x,h) ^w+ +S VxGft. 

Hence, we see that (2.5) with e := ux(x,-) and (2.6) with w := w(x,-) hold for all 
x eft and t ^h, and it remains only to check the first condition in (H8) i)-iv) if one 
wants to apply one the corresponding inequalities (2.7)-(2.10). Since ux and w are 
uniformly continuous on ft x [0,h], there is some open neighborhood U C ft of x\ 
such that 

(3.24) \ux(x,t)-ux(xi,t)\ + \w(x,t)-w(xut)\^ - V i € U, t' G [0,*i]. 
O 

Now, we consider the case ux(x\,t0) = e+ + 2C4 + S. Since ux is continuous on 
ft x [0,h] and ux(x\,0) ^ e+, we get some to € (0,*i) such that 

r r 

(3.25) e+ + - -= _x(-i,*o), £+ + 5 < « x ( « i , 0 < s + + 2 C 4 + ( 5 V*E (*o,*i). 

Combining this with (3.24), we conclude that ux(x, t) ^ e+ for all x e U, t e (to, h). 
In the light of (2.7) in (H8) i), we see that 

(3.26) ||F||Lco(0oo) ^ Hx[ux,w](x,t), 0 ^ rl2[ux,w](x,t) Vx € U, te (t0,h). 

Applying (1.2) and the fact that 0 > 0 on ftoo by (2.25), we observe that a ^ -F 
a.e. in U x (t0,h). Thanks to (3.14) and (3.10), we deduce that qt ^ 0 a.e. in 
U x (t0,h). This leads to 

/ (q(x,h) -q(x,t0))dxdr = / / qt(x,t) dtdx ^ 0. 
Ju JuJt0 
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On the other hand, using (3.9), (3.16), (3.24), (3.25), and ux(xut0) = e+ + \S, we 
conclude that 

/ (q(x,t1)-q(x,t0))dx^ / (ux(x,ti) - C4 - (ux(x,t0) + C4)) dx 
Ju Ju 

^ / ( ^ x ( ^ i ^ i ) - g - (ux(xi,t0) + -J-2C4)dx 

I Ž I - d . r > 0 . 

Hence, we have derived a contradiction. By an analogous argument, we get a con­
tradiction if ux(x\, t\) = £- — 2C4 — S. 

Now, we will deal with the case of w(x\,t\) = w+ + 6. Applying the continuity 
of w, we get some t0 € (0, h) such that 

(3.27) w(x1,t0) = w+ + -, w+ + - < w(xi,t) < w+ + 6 V£ G (*o,*i). 

Combining this with (3.24), we see that w(x,t) ^ w+ for all x G U, t G (t0,ti). 
Therefore, we conclude from (2.9) in (H8) iii) that 

(3.28) H3[ux,w](x,t)^0, H4[ux,w](x,t)^0 Vx e U, t e (t0,h). 

Since 6 > 0 a.e. on QQO by (2.25), we deduce now from (1.5) and (1.4) that wt < 0 
a.e. in U x (Jo,-a)- This leads to 

/ (w(x,t\) — w(x,t0))dx = I I wt(x, t)dtdx ^ 0. 
Ju JuJto 

Since w(x\, t\) = w+ + 6, (3.27), and (3.24) yield that the integral on the left-hand 
side has to be positive, we have derived a contradiction. An analogous argument to 
get a contradiction can be used if w(x\,h) = w- — S. 

Hence, we have derived a contradiction for all cases we have to consider by (3.19). 
Therefore, we have proved (3.18). Recalling (1.6) and (3.9), we get also uniform 
bounds for u and q, and (3.17) is proved. • 

R e m a r k 3.4. Because of (3.17), we have uniform bounds for ux and w. Thanks 
to (H6), (3.5), (1.2), (1.5), and (1.4), we see that there are positive constants C6, 
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C7,- -,C9 such that 

(3.29) max sup(||7A[u*,w](-,*)lloo) < C6, 
1<*<4 0 ^ t 

(3.30) |<j| + \wt\ < C7(l + 0) a.e. in Ox>, 

(3.31) 0 ^ sup / ( -^ 2 [u x ,w](M))dz ^ C8, 
0<t Jo 

(3.32) max \(%i[ux,w])t\ + \(Tx[ux,w])t\ < C9(\uxt\ + y/wt(G[w])t) 

a.e. in iQoo-

Since (3A7) and (H4)ii) yield that 0 ^ wt(G[w])t ^ C\QWI a.e. in ffcoo, we deduce 
that 

(3.33) max \(%i[ux,w])t\ + \(Tx[ux,w])t\ ^ Cn(\uxt\ + \wt\) a.e. in Ox>. 
l<i<4 

We apply (H4)i), (1.2), (1.5), (1.4), and (H4)ii) to conclude that, a.e. on fioo, it 
holds that 

(3.34) (Fx[ux,w])t - a(x,t)uxt 

= (G[w])tH3[ux,w] - \Vx[ux,w]\ -0H2[ux,w]uxt 

= -\(G[w])twt\-\Vx[ux,w]\ 

- 0(H2[ux,w]uxt + (G[w])tH4[ux,w]). 

Lemma 3.5. We have a positive constant C\2 such that 

<-> f (l^4A*<-44ffit?ffl<-4> 
/»oo 

+ / I I ^ K ^ K - . ^ l l i ^ + suplIln^.^))!!! < C 1 2 . 
Jo o^t 

Proo f . Testing (1.3) by -1/0 and using (1.6), (3.34), (H2), and (H4)i), we 
observe that 

< _ | / ^ K , « , ] ( . , ( ) d x - / l ( 6 1 » ] ) . ( » . « K ( ^ ) K | P . l « . , » l ( x , « ) l d l 

ot JQ JQ 0(x, t) 

+ I (-\V2[ux,w](x,t)\ + \g2(x,t)\)dx. 
JQ 

Now, we integrate this equation over time and observe that (3.35) follows by apply­
ing (3.31), (H2), (H5), (3.5), and the inequality |lns| ^ s - Ins for all s > 0, which 
can be proved by elementary analysis. • 
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Lemma 3.6. We have a positive constant C13 such that 

(3.36) r°(||«-t(-,.)||? + IM-,*)llSo + \\p(;t)\\l + ||(aM)t(-,.)ll? 
JO 

+ ||(^i[u„«;])t||; + \\(y/9U;l)\\l) dt ^ C13. 

Proo f . Since 0 > 0 a.e. on iQoo, we can apply Schwarz's inequality and (3.5) to 
show that for all t > 0 

(3.37) ||ti«t(-,*)lli = / ÌUф^VӢ^ťjdx < C14 
Jn ҳ/ (x,t) V (',*) 

Recalling now (3.35) leads to the estimate for uxt in (3.36). Using that, by (1.6) and 
(2.22), ut(y, t) = f* uxt(x, t) dx for all y € ft, we get the estimate for ut. Combining 
this estimate with (3.9) leads to the estimate for p. 

Applying (3.32), (H4)ii), (3.35), and Young's inequality, we deduce that 

ľ 
Jo 

V Ы Ì 

(Ј"i[ux,гü])ť 

V ИLГ^ 1 5 ' 
Considering now (3.37) with uxt replaced by (£[w])t> we get the estimate for (£[w])t 
in (3.36), and the estimate for (^[Ux,!/;])* is derived analogously. Thanks to 
Schwarz's inequality, we have 

^"••''ii-î HÎ HL11 '̂'*-
In the light of (3.5) and (3.35), we see that also the estimate for y/0x in (3.36) is 
established. • 

Lemma 3.7. For 0 and h as in (2.29) and (3.4) there are positive constant Ci6, 

C17, and Cis such that 

(3.38) 

(3.39) 

| / l(<)KC16, C17<6(t)<C18 V í^O, 

l|0(-,O-*(*)lloo < IIM-,*)lli *s IIM-,*)II- V Í ^ O . 

Proo f . Combining (3.4), (3.6), (1.7), (3.5), and Holder's inequality, we see that 

\h(s)\ < C19 + I J (u(x,s) - u0(x))foo(x)dx\ + / | | / ( . ,0 - /ooWHa |k(.,*)| |2d*. 
I Jo I Jo 
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Recalling (3.17), (3.5), (H7), and (HI), we get the uniform bound for h in (3.38). 
Since s »-> — Ins is a convex function on (0,oo), we get by (2.25) and Jensen's 
inequality that 

- In / 6(x, t) dx ^ - / ln(0(x, t))dx V t^ 0. 
JQ Jn 

Invoking now (3.35), (2.29), and (3.5), we get (3.38). The first inequality in (3.39) 
follows from the definition in (2.29), and the second by applying Schwarz's inequality 
and fQldx = l. • 

Lemma 3.8. We have a positive constant C20 such that 

(3.40) П™-' t)\\l+ ^(Ы2)Ы)|| + Ш) dť 

+ SUp(|K(-,í)|І4 + | |0(-,t) |І2KC 2 0. 
0<t 

Proof. We test (3.1) by 0 + \u\ and (1.1) by au\ where a > 0 will be fixed 
later. Summing the resulting equations and using (1.6) and (3.4), we observe that 
for all * > 0 

(3.41) 
l ð 
2дt *(-,*) +2-?(-,.) + IIM )̂ll.. + £|lM-,*)llî 

+ (l + Зo)|K(-, «)«*«(•,-)llâ 

< Җt)Ц&- + h(t) + h(t) + h(t), 

with 

(3.42) I2(t) := /(-(.Fi[ux,H)tOM) + g(x,t,6(x,t)) +ut(x,t)f(x,t)) 
JQ 

x (9(xJt)-0(t))dx, 

(3.43) I3(t) := - J (^(Fi[ux,w])tu
2

t + 20xututx + utaOx 

+ (1 + 3a)u2utxa J dx, 

(3.44) I4(t) := f(g + (l + 2a)utf)±u2dx. 
Jn * 

In the sequel, the generic constants C» will be independent of a. We estimate the left-
hand side of (3.42) by using Holder's inequality, (H7), (3.39), and Young's inequality, 
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resulting in 

(3.45) I2(t) < (\\{Ti[uxM)t{;t)h + ll_(-,t,.(-,t))||1 + | |«t(.,t)| |0 0 | |/(.,t)| |1) 

X | | . ( - , t ) - . ( t ) | | o o 

^ C21(||(^i[«x,H)*(-,t)||2 + H;t,e(;t))\\l + ||«t(-,t)||L) 

+ \\\0*(;t)\\l 

Invoking (3.43), (3.33), (3.30), Holder's inequality, and Young's inequality, we deduce 
that 

(3.46) I3(t) < C22((l +a) | |« t x (-,t)« 2 (.,t) | | 1 + ||«?(-,t)||i + \\v?{;t)8(;t)\\i) 

+ 2| |^(.,f)« t (.,t)« t _(.,t) | | i+C 2 3 | |« t (.,t)^(.,t) | | 1 

+ C24||ex(-,t)«t(.,t)0(.,t)||1 + ( l+a)C 2 5 | | « 2 (. , t )« t l (. , t )0(. , t ) | | 1 

< C_e||«t(-,t)utx(; t)\\\ + C27(l + a2)||« t(-, t)f2 

+ C28(l + a2)||« t(.,t)||2

X ) | |^(.,t)||2 + i | | ^ ( . , t ) | | 2 . 

Using (3.44), (H2), Holder's inequality, (3.5), (H7), (3.39), (3.38), and Young's in­
equality, we conclude that 

(3.47) 2J4(t) < ||5i(-,t)| |2 | |« t(.,t)| |2 | |« t(.,t)| |0 0 

+ (8(t) + \\e(;t)-d(t)\U\\g2(;t)\U\ut(;t)\\l 

+ (l + 2a)||« t(.,t)| |2 | |/(.,t)| |2 | |« t(.,t)| |2„ 

< \px\\l + o29(||5i(-,t)||2 + |„_(-,t)| |_ + \\92(;t)\\l) 

+ C30(l + a2)| |« t(.,t)| |2

M. 

Because of (3.2) and Young's inequality, we have 

u AM m\dh{t) < T d h ( t ) + ld(T r/..- + x 11.1 ( t\\\* 4- x (dh{t)Y 
(3.48) * ( * ) _ _ _ < / o _ _ + __(/,(«)) + _ | | u . ( . , t ) | | a + _ ^ _ _ _ j . 

From (3.4), we get by using Holder's inequality, Young's inequality, (H7), and (H2) 

that 

^2 
l|2 , 1L. ( *M|2 . II TI"*. „.,1\ ( *M|2\ (3.49) ( ^ P ) < Cзi(||í/(-,t,Ö(.,ť))||2 + ||«t(-,ť)||2 + ||^i[«x,И)t(-,ť)||2). 
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Now, we integrate the sum of (3.41) and (3.49) over time, and use (1.7), (HI), 
(3.45)-(3.49), (3.6), (H2), (3.5), (3.36), (3.38), and 6 > 0 a.e. on SI to show that 

l\\0(;s)\\l + j\\ut(;s)\\i 

+ f (\PX(; t)\\l + (1 + 3a)|K(.,*)«*«(•,*)II5 + | ( ^ p ) ) dt 

^ C32 ( l + a2 + f(\\ut(;t)utx(;t)\\l + (1 + a2)\\ut(;t)\\l\\9(;t)\\l)dt) 

holds for all s > 0. Next, we define a := C32, apply Gronwall's Lemma, and 
recall (3.36) to show that (3.40) is satisfied. • 

Lemma 3.9. There are positive constants C33, C34 such that 
/•OO 

(3.50) / (|K*(-,')lli + l l(eM)t(^H(-, ' ) l l i + ll»i[ti*,w](-,0lli)d*<^33, 
Jo 

/•OO 

(3.51) / (||p--(.,.)|l! + \\(p + q)t(;t)\\l + \\ut(;t)\\l + ||(^i[««,«»]).(.,«)||2 
JO 

4 

+ £ \Wi[ux,w])t(;t)\\l + \\(Q[w])t(;t)\\l)dt < C34. 
ѓ = l 

Proof. Integrating (1.3) over Q, and applying (1.6), (2.29), (3.34), and (H4) ii), 
we derive 

ll««.(-,t)lla < ^ - + llff(-,*,*(-,t))lli - \\(G[w})t(;t)M;t)\h - ||2?1[ux,H(-,<)lli 

- / (0(x, t) - 6(t))(H2[ux, w](x, t)uxt(x, t) + (G[w])t(x, t)n4[uw,w](x, t)) dx 
Jn 

-^(OoT / T2[ux,w](x,t)Ax. 

We multiply this inequality by l/0(t) and use (3.29), Holder's inequality, and Young's 
inequality to prove 

-i-(ll««i(-, 0111+ ll(GrH)t(-,-)«»«(•,-)lli + ll^i[««, «•](-, Olli) 
V(t) 

* ^T- + ^(;tM;t))\\i - §-tJ^2[ux,w](x,t)dx 

+ ^(\\0(;t)-e(t)\L + \\uxt(;t)\\l + ||(GM)«(.,0ll?). 
Integrating this inequality over time, and using (3.6), (3.38), (3.39), (3.36), and 
(3.40), we observe that (3.50) is proved. The estimates in (3.51) follow by apply­
ing (3.9), (1.6), (3.32), (H4), and (3.17). • 
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Lemma 3.10. There is a positive constant C3Q such that 

/-OO 

(3-52) / (||a(.,r)||i + | |p t(.,r) | | i )dr^C 3 l 
JO 

-'Зб-

P r o o f . Let J(x, t): fioo -> IR be defined by 

(3.53) J(x,t) := *(x,t)+n2[ux,w](x,t)fo(t) - 0(x,t) + ^\\ut(;t)\\2 

+ j [ X ( / o o ( 0 - / « , * ) ) « ) a .e . inn. 

Using (3.H) two times, we get 

(a(x,t))2 =pt(x,t)a(x,t) -pxx(x,t)d(x,t) 

= pt(x,t)J(x,t) + (<r(x,t) +pxx(x,t))(a(x,t) - J(x,t)) 

— pxx(x,t)d(x,t). 

Integrating this equation over il, and using Young's inequality, (3.53), (3.29), and 

(3.39), we observe that 

д J(x, t) 

дt 
dx (3.54) | | |a(-, t)H5 < ^ J P ( * . t)J(x, t)dx-J p(x, t) 

+ C37(lbxx(-,t)lli + ll*-(-,-)ll- + \\M;t)\\$ 

+ \\f(;t)-f00(;t)\\2

1). 

Applying (3.53), (3.10), (1.2), (H7), and (3.2), we observe that 

(3.55) J(x,t) = H1[ux,w](x,t) + H2[ux,w](x,t)(I1(t) + I0) + J L»(£)d£. 

Hence, using (3.29), (3.38), (H7), Holder's inequality, Young's inequality, (3.36), 
(3.51), and (3.40), we get uniform bounds for J and, for all s ^ 0, 

- / / íK-
Jo JQ 

t) 
ӘJ(x, t) 

дt 
dxdt ^ Í ( I W ' t)l|2oo + 

дJ(;t) 

Әt 
dť ^ C38-

Integrating now (3.54) with respect to time and using (3.16), (3.51), (3.40), (3.5), 
(3.36), and (H7), we have shown the estimate for & in (3.52). Combining this estimate 
with (3.11) and (3.51), we get the estimate for pt. • 
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Lemma 3.11. Let C € Lfoc(0, co; H2(fi)) n fl^O, oo; L2{Q)) be the solution to 
the parabolic initial-boundary value problem 

(3.56) Ct - Cxx = ot a.e. in fyx,, 

(3.57) C*(<M) = C ( M ) = 0 V ^ O , C( ' ,0 )EE0. 

Then we have a positive constant C39 such that, for all t^ 0, 

(3.58) | |C(-,t) | |2
0 O<C39(l+m^ tP(-,T)| |^2+ (f\\et(;r)\\ldr) ) . 

Proof. Multiplying (3.56) by £, integrating over ft x (0, T), performing partial 
integrations, and using (3.57), we get for all t > 0 

(3-59) ^||C(-,t)ll! + £llC*(-,T)||2dT 

= &t(x,T)C(x,T)dxdr 
Jo Jo. 

— I &{x, t)((x, t) dx — / / or(x,r)Ct(-C,r)dxdr. 
JQ JO JQ 

Because of (3.10), (3.30), (3.40), and (H7), we have a uniform upper bound for 
ll^(*^)I|2. Hence, we get from (3.59) by applying Holder's inequality, Young's in­
equality, and (3.52) that 

(3.60) |||C(-,*)lli + j T IICx(-,T)||2dr < C4o(jT ||Ct(-,r)||
2dTJ . 

Formally, we test (3.56) with Ct? use (3.57), integrate over time, and apply Young's 
inequality to deduce that 

(3.61) rilCt(-,T)| |2dT+||C,(-,t)lli^5/ t | IC t(-,r) | |2dT+iy* t | |^(. ,T)| |2dT. 

For a rigorous derivation of this inequality, one has to consider (3.56) with bt replaced 
by some smooth approximation, perform this computation for the corresponding 
solutions, and consider afterwards the limit. 

Inserting (3.60) into the left-hand side of (3.61) and using (3.10), (1.2), (3.36), 
Holder's inequality, Young's inequality, (3.29), (3.51), (H6), and (H7), we observe 
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that 

(3-62) ^cfKi-^Wt + WUMl 

<\f \\(rll[ux,w}+0H2[ux,w} + F)t(;T)\\2dT 

< C41 + C42 max | | 0 ( - , T ) | | ^ + C43 / \\6t(;T)\\\dT. 

Thanks to the Gagliardo-Nirenberg inequality (see below) and Young's inequality, 
we conclude that 

||C(-,t)|lL<(C44||Cx(-,f)|l2/2||C(-,<)ll2/2 + C45||C(-,t)l|2)2 

^C46(l + ||Cx(-,<)||2/2 + IIC(-,<)lli). 

Now, we apply (3.62) and Young's inequality to prove that (3.58) holds. • 

The following version of the Gagliardo-Nirenberg inequality is a special case, more 
general formulations can be found, e.g., in [3], [39]. 

Lemma 3.12 (Gagliardo-Nirenberg inequality). For all p^ 1 there are positive 

constants C47, C48 such that 

(3.63) |MU ^ C47ll^ll2/(p+2)lkll^/(p+2) +o48lM|P v « e H^il). 

Lemma 3.13. There is a positive constant C49 such that 

(3.64) \\uxt(;t)\\l < C 4 9 ( l + m a x \\0(;T)\\1+ Q f W , T ) | | l d 7 - ) ) . 

P r o o f . Let 2:1,22: -̂00 —>• K be the solutions to the parabolic initial-boundary 
value problems 

(3.65) ziit - ziiXX = 0 a.e. in ^ Vi G {1,2}, 

(3.66) z{(l,t) = zitX(Q,t) = 0 for a.e. t > 0 Vi € {1,2}, 

(3.67) zi(x,Q) = ui,x(x,Q), z2(x,Q) = a(x,Q) a.e. in ffc. 

Let z3: Hoc -> IR be defined by 

(3.68) z3(x,t)= f f zi(Z,t)d£dy+ [ (Z2(X,T) + C(x,r))dr V (x,t) € Ox>-
Jl Jo Jo 
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Recalling (3.65), (3.66), (3.67), (3.56), (3.57), and (HI), we observe that 

(3.69) z3,t = zi + z2 + C, z3iXX = zi + z2 + C - a a.e. in ftoo, 

z3(l,t)=0 = z3,x(0,t) f o r a . e . ^ 0 , z3(x,0) = f t*i(Odf V x e f t . 

Hence, we see that z3 is a solution to the linear parabolic initial-boundary value 

problem considered in (3.H)-(3.13). Since p is the unique solution to this problem, 

we have p = z3 a.e. on ftoo- Therefore, recalling uxt = pxx and (3.69), we have 

(3.70) uxt = z3yXX = z\ + z2 + C - cr a.e. in ffcoo-

Using (3.67), (HI), (3.10), (1.2), (1.6), (H6), and (H7), we get uniform bounds 

for z\(-,0) and z2(*,0). Applying the maximum principle for linear parabolic equa­

tions, we get uniform bounds for z\ and z2. Because of (3.10), (H7), and (3.30), we 

have 

5" ^ C50 + C$i8 a.e. in fioo-

Thus, applying (3.70), (3.58), and Young's inequality yields that (3.64) holds. D 

Lemma 3.14. There is a positive constant C 5 2 such that 

(3.71) SUp \\9X(;T)\\2+ f \\9t(',T)\\2

2dT^C52. 
O^r^t JO 

P r o o f . Testing (1.3) by 0t, using (1.6), (H2), Young's inequality, Holder's 

inequality, and (3.30), we see that 

(3.72) \\\0t(;t)\\l + ^\\ez(.,t)\\l 

< |li«xt(-,t) + t"tixt(-,t) - (^i[Ux,t])t(-,t) +9(;t,0(;t))\\l 

< C 5 3|Kt(-,t) | | l ( | |«xt(-,t) | |^ + 1 + \\9(;t)\\l) 

+ c54(^iK,t])t(-,t)|H + c55||5i(-,t)||l 

+ CM\\to{;t)\\l\\0(.,t)\\2

c ІOO* 

Integrating this equation over time, using (1.7), (HI), (H2), Holder's inequality, 

(3.50), (3.51), and (3.64), we see that 

(3.73) fS\\Ot(;t)\\ldt+\\0x(.,s)\\l 
JO 

< C 5 7 + C 5 8 maoc (| |U xt(-,í)HL + l|0(-,ť)HL) 

< C59 + C60( i llfltí-.OIIŠdťY + C 6i max ||0(-,ť)|| 
\J0 J 0<t<s 

2 
oo* 
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Thanks to the Gagliardo Nirenberg inequality and (3.5), we have 

||*(-,.)||oo ^ C62\\6x(;t)\\l
/3\\0(;t)\\\/3 +Ces||tf(-,*)||l < C64 + C65\\0x(;t)f2

/3. 

Using this inequality to estimate the right-hand side of (3.73), and applying Young's 
inequality afterwards, we see that (3.71) holds. • 

Lemma 3.15. There are positive constants CQQ, CQ^ such that 

(3.74) SUp(||0(-,t)lloo + K t M l l o o + |K-,*)Hoo + |K(.,f)lloo) ^ C66, 

/»oo 

(3.75) / (||a.(-,t)ll2 + ll^(-,*)ll3 + ll*t(-,0lll)d«<C6T, 
JO 

i»00 

(3.76) / (|2>i[tix(a?,-)^(^')](*)! + \V2[ux(xr),w(xr)](t)\)dt < oo 
Jo 

for a.e. x G Vt. 

P r o o f . Using (3.39) and (3.71), we get the estimate for 6 in (3.75) and ap­
plying in addition (3.64) and (3.30) leads to the remaining estimates in (3.74). In­
voking (1.2), (1.5), (3.51), (3.74), (3.71), and (3.29), we get the estimates for ot and 
i\)t. Utilizing also (3.10), (H7), and (3.36), we derive the estimates for ot. Combin­
ing (3.35) and (3.50) and using Fubini's theorem, we see that (3.76) holds. • 

4. P R O O F OF THE ASYMPTOTIC RESULTS 

As in the preceding section, it will be assumed that (H1)-(H8) are satisfied, and 
that a solution (u,0,w) to (1,1)-(1.7) is given, such that (2.22)-(2.25) holds. 

For proving the asymptotic results in Theorem 1 and in Theorem 2 with an argu­
mentation similar to [33, Section 4], the following modification of [34, Lemma 3.1] 
will be used. In the original formulation, it was assumed that the inequality in (4.1) 
holds for all t in the interval considered, but the proof in [34] can also be used if this 
inequality holds only for a.e. t in the interval considered. 

Lemma 4 .1 . Suppose that y and h are nonnegative functions on (0, oo), with y' 
locally integrable, such that there are positive constants A\,.. .,A4 satisfying 

(4.1) y'(t) ^ AlV
2(t) + i 2 + h(t) for a.e. t € (0, oo), 

/•OO /«oo 

(4.2) / y(t)dt^A3, / h(t)dt^A4. 
Jo Jo 

Then we have lim y(t) = 0. 
t—>oo 
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L e m m a 4.2. We have (2.27) and 

(4.3) lim ||p«(-,í)ll- = lim IK(-,*)||2 = O, 
ť—>oo ť—>oo 

(4.4) lim | | č ř ( . , t ) | | a = lim | |ft | |2 = 0. 
t—>oo t—>oo 

P r o o f . Testing (3.11) with — pxx, applying (3.12) and Young's inequality, we 
see that 

^ l l P - M H - + l|P-.(-,*)lll ^ \\\pxx(;t)\\l + \\\*(;t)\\l ^ a.e. t e (0,oo). 

Since ut = px a.e. in ftoo, we see by recalling (3.36) and (3.52) that we can apply 
Lemma 4.1 to show that (4.3) holds. We have, by Young's inequality, 

д_ 
дt 

ll*(-.Olla = 2 / *(*.-)*•(*, t) dx ^ | |a(-,ť)||l + IM-,«)||S for a.e. t e (0,oo). 

Invoking (3.52), (3.75), and Lemma 4.1, we get the convergence result for a in (4.4). 
Since (3.14), (3.10), and (H7) yield that qt = —a, we also have the result for qt 

in (4.4). Combining (4.4), (3.10), (H7), and the definition on Foo in (2.29), we 
get (2.27). D 

L e m m a 4.3. We have 

(4.5) lim \\pt(;t)h = lim |bxx(-,ť)||2 = Um \\u,t(.;t)h = lim IM-,t) | |o- = 0. 
ť—>oo t—>oo ť—>oo ť—>oo 

P r o o f . Differentiating (3.11) with respect to t, testing it afterwards by pt, and 
applying (3.11) and Young's inequality, we see that 

§-t\\Pt(;t)\\22 + | |*-.(-,t)| |§ < \\\Pt(;t)\\l + \\\at(;t)\\l for a.e. t € (0,oo). 

Using (3.52), (3.75), and Lemma 4.1, we get the convergence result for pt in (4.5). 
By (3.11), we can combine this with (4.4) to prove the convergence result for pxx 

in (4.5). Recalling also (3.9), we get the convergence result for uxt and using (1.6), 
we obtain the result for ut. D 
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Lemma 4.4. We have 

(4-6) lim UM-, *)ll2 = Hm \\0(; t) - 0(i)||oo = 0. 
£-*oo t—foo 

Moreover, we have some constant 0* > 0 such that (2.30) holds. 

P r o o f . Combining (3.72) with (3.74), we get for a.e. t € (0, co) 

\^t\\
0*(-'t)\\l < c68(\\uxt(.,t)\\l + Il(^i[ti„*])t(-,*)ll3 + \\gi(',t)\\l + Ilg2(-^)||i). 

Because of (3.40), (3.50), (3.51), and (H2), we can now use Lemma 4.1 to get the 
convergence result for 6X. Recalling (3.39), we obtain the result for 0 — 0. Combining 
this with (3.38), we get some t0 > 0 such that 

0(x,t) > -Cl7 Vx €f t , t^t0. 

Moreover, (2.23) and (2.25) yield that 0 is continuous and positive on IQ x [0, t0], 
and therefore also bounded from below by a positive constant C on this set. Setting 
0* := min(|Ci7, C), we see that (2.30) holds. D 

This completes the proof of Theorem 1. 

Now, the additional convergence results in Theorem 2 will be proved. 

Lemma 4.5. IfQ is the identity operator, then we have (2.32) and 

(4.7) lim |K(.,t)ll2 = lim ||^(-,*)||2 = 0. 
t—yoo t—too 

P r o o f . Testing the time derivative of (1.4) by wt and using Young's inequality, 
we see that for a.e. t £ (0, oo) 

O /» - 1 - 1 

^IM- ,011! < y wt(x,t)M*,t)dx^ - |K(- ,0I .2+ 2lW*(-'*)ll2-

By assumption, we have wt = (G[w])t, and can therefore apply (3.51), (3.75), 
Lemma 4.1, and (1.4) to show that (4.7) holds. Using now (H6) iii) and (4.5), we get 
also (2.32). D 
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Lemma 4.6. Assume that Hi = 7i3 = T\ = 0, g = 0, and / = 0. Then, we 
have 

(4.8) 0(;t) -> ||0o||i + 2^-;ll«i|l2 as t - • oo, in L~(ft) 

and (2.34). Iff? is the identity operator then we have (2.35). 

P r o o f . Thanks to the assumptions, (3.4), (3.10), (1.2), (H7), and (H5), we 
see that I\ = 0, that IQ/CV is equal to the right-hand side of (4.8), and that a = 
6H2[ux,w]. Invoking (3.2), (4.5), (4.6), (4.4), and (HI), we get (4.8) and (2.34). If 
Q is the identity operator then it follows from (4.7), ^ = 01H,/i[ux,w], and (4.8) that 
(2.35) holds. • 

Lemma 4.7. If (H9) holds then there is a u ^ G W^°°(il) such that (2.36)-(2.37) 

hold. 

P r o o f . Owing to (3.76) and (H9), we have a function £&: Q —> U such that 

(4.9) ux(x,t) -» £OO(-E) as t —> 00, for a.e. i G l l . 

Invoking (3.17), compactness, and properties of weak-star and weak convergence, we 
see that ux(-,t) —•> Soo as t —> 00 weakly-star in L^f. Defining now Uoo(x) := f* £oo(0 
and using (1.6), we conclude that Uoo G Wlt00{il) and (2.36)-(2.37) hold. • 

Lemma 4.8. If (H10) holds then there is a ^ E L°°(ft) such that (2.38) holds. 

P r o o f . Thanks to (3.76), (H10), (3.17), compactness, and properties of weak 
convergence, we get a w^ G L00(Q) such that (2.38) holds. • 

Hence, Theorem 2 is proved. 
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ASYMPTOTIC BEHAVIOUR FOR A PHASE-FIELD MODEL

WITH HYSTERESIS IN ONE-DIMENSIONAL

THERMO-VISCO-PLASTICITY*
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Abstract. The asymptotic behaviour for t → ∞ of the solutions to a one-dimensional
model for thermo-visco-plastic behaviour is investigated in this paper. The model consists
of a coupled system of nonlinear partial differential equations, representing the equation
of motion, the balance of the internal energy, and a phase evolution equation, determining
the evolution of a phase variable. The phase evolution equation can be used to deal with
relaxation processes. Rate-independent hysteresis effects in the strain-stress law and also in
the phase evolution equation are described by using the mathematical theory of hysteresis
operators.

Keywords: phase-field system, phase transition, hysteresis operator, thermo-visco-
plasticity, asymptotic behaviour

MSC 2000 : 74N30, 35B40, 47J40, 34C55, 35K60, 74K05

1. Introduction

In this paper, an initial-boundary value problem for a system of partial differential
equations involving hysteresis operators is considered, and the asymptotic behaviour
of the solutions to this system is investigated. The system has been derived in [25]
to model one-dimensional thermo-visco-plastic developments connected with solid-
solid phase transitions taking also into account the hysteresis effects appearing on
the macroscopic scale as a consequence of effects on the micro- and/or mesoscale.

To model such developments, one is considering the evolution of several quantities:
the displacement u, the absolute temperature θ, and a phase variable w, which is

*This work was supported by the Deutsche Forschungsgemeinschaft (DFG) by contract
SP 212/10-3.
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usually a so-called generalized freezing index, see [21]. For a wire of unit length, the
evolution of these fields is determined by the following system:

%utt − µuxxt = σx + f(x, t) a.e. in Ω∞,(1.1)

σ = H1[ux, w] + θH2[ux, w] a.e. in Ω∞,(1.2)

(CV θ + F1[ux, w])t − κθxx = µu2
xt + σuxt + g(x, t, θ) a.e. in Ω∞,(1.3)

νwt = −ψ a.e. in Ω∞,(1.4)

ψ = H3[ux, w] + θH4[ux, w] a.e. in Ω∞,(1.5)

u(0, t) = 0, µuxt(1, t) + σ(1, t) = 0, θx(0, t) = θx(1, t) = 0 a.e. in (0,∞),(1.6)

u(·, 0) = u0, ut(·, 0) = u1, θ(·, 0) = θ0, w(·, 0) = w0 a.e. in Ω,(1.7)

with Ω∞ := Ω× (0,∞) and Ω := [0, 1].
The equation (1.1) is the equation of motion, (1.3) is the balance of internal

energy, and (1.4) is the phase evolution equation. By the constitutive law (1.2),
the elastoplastic stress σ is determined, and the constitutive law (1.4) defines the
thermodynamic force ψ. The boundary condition (1.6) means that the wire is fixed at
x = 0, stress-free at x = 1, and thermally insulated at both ends. Here, x denotes the
space variable, t denotes the time, and the indices x and t denote the differentiation
with respect to space and time, respectively.
The mass density %, the viscosity µ, the specific heat CV , the heat conductivity κ,

and the kinetic relaxation coefficient ν are supposed to be positive constants. The
initial data for the displacement, the velocity, the temperature, and the phase vari-
able considered in (1.7) are denoted by u0, u1, θ0, and w0, respectively. Finally, the
nonlinearities Hi, 1 6 i 6 4, and F1 are hysteresis operators (see below), where one
needs to take into account ux(x, ·)|[0,t] and w(x, ·)|[0,t] to compute Hi[ux, w](x, t) and
F1[ux, w](x, t).
These operators are supposed to reflect some memory in the material on the

macroscale, resulting from effects in the micro/mesoscale. Such effects can lead to
hysteresis loops, as they are for example observed in the macroscopic strain-stress
relation (ε-σ, where ε = ux is the linearized strain) determined from measurements
in uniaxial load-deformation of materials like shape memory alloys, see, e.g., [2], [4],
[6], [7], [8], [9], [10], [30], [31], [38]. The curves show a strong dependence on the
temperature, but many of them are rate-independent, i.e., they are independent of
the speed with which they are traversed.
There are other approaches to model hysteretic behaviour by considering systems

similar to parts of (1.1)–(1.5), where the operators F1 and Hi, for 1 6 i 6 4, are
superposition operators. These models are derived by considering a free energy,
which is a superposition operator, involving a potential which has (one or more)
concave parts. The concave parts of the potential correspond to unstable physical
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states, and these instabilities are supposed to produce the observed hysteresis effects.
Such approaches have successfully been used and investigated in a number of papers,
see, e.g., [3], [5], [7], [9], [33], [37], [39] and the references therein, but the modelling
by non-convex free energies has its limits, since a non-convex part of the potential
alone does not ensure that hysteresis loops are present, see, e.g., [29]. Moreover, the
simple superposition operator cannot represent all the complicated hysteresis curves
that are observed in experiments.
Hence, to describe such structures, the more general hysteresis operators have

been introduced and used in a number of papers, see, e.g., the monographs [3], [14],
[15], [36] on this subject and the references therein. For a final time T > 0, an
operator H : C[0, T ] → Map[0, T ] := {v : [0, T ] → � } is a hysteresis operator if it is
rate-independent and causal according to the following definitions. The operator H
is called rate-independent, if for every v ∈ C[0, T ] and every continuous increasing
(not necessarily strictly increasing) function α : [0, T ] → [0, T ] with α(0) = 0 and
α(T ) = T it holds that H[v ◦ α](t) = H[v](α(t)) for all t ∈ [0, T ].
An operator H : D(H) (⊆ Map[0, T ]) → Map[0, T ] is said to be causal, if for every

v1, v2 ∈ D(H) and every t ∈ [0, T ] we have the implication

(1.8) v1(τ) = v2(τ) ∀ τ ∈ [0, t] ⇒ H[v1](t) = H[v2](t).

An example of a hysteresis operator is the stop operator, which is also called Prandtl’s
normalized elastic-perfectly plastic element. To define the stop operator, we consider
some yield limit r > 0, an initial stress σ0

r ∈ [−r, r], and a final time T > 0. For
each input function ε ∈ W 1.1(0, T ), we have (see, e.g., [3], [14], [15], [36]) a unique
solution σr ∈ W 1,1(0, T ) to the variational inequality

σr(t) ∈ [−r, r] ∀ t ∈ [0, T ], σr(0) = σ0
r ,(1.9)

(εt(t)− σr,t(t))(σr(t)− η) > 0 ∀ η ∈ [−r, r], a.e. in (0, T ).(1.10)

This defines the stop operator Sr : [−r, r]×W 1,1(0, T ) →W 1,1(0, T ) : (σ0
r , ε) 7→ σr.

An example for the evolution of the input and the output for the stop operator
is presented in Fig. 1, showing the input-output relation of S2[0, ε] for an input
function ε which initially increases from 0 to 5, then decreases to −6, then increases
to 0, then decreases to −3, and finally increases to 6.
Connected with the stop operator Sr is another important hysteresis operator, the

so-called play operator Pr defined by

(1.11) Pr : [−r, r]×W 1,1(0, T ) →W 1,1(0, T ) : (σ0
r , ε) 7→ ε− Sr[σ0

r , ε].

It is well-known, see, e.g., [3], [14], [15], that the stop and the play operator can be
extended to Lipschitz continuous operators on [−r, r]×C[0, T ]. Moreover, using the
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Figure 1. An example for the evolution of (ε(t),S2[0, ε](t)), starting in S = (0, 0) and
finishing in F = (6, 2).

notation of [3, Chapter 2.5], one has for all σ0
r ∈ [−r, r] that 1

2S2
r [σ0

r , ·] is the clockwise
admissible potential and rPr[σ0

r , ·] is the corresponding dissipation operator for the
operator Sr[σ0

r , ·], i.e., for all ε ∈ W 1,1(0, T ) it holds that

(1.12)

(
1
2
S2

r [σ0
r , ε]

)

t

+ |(rPr [σ0
r , ε])t| = Sr[σ0

r , ε]εt a.e. in (0, T ).

Let Map[0,∞) := {v : [0,∞) → � }. An operator H : D(H) (⊂ Map[0,∞) ×
Map[0,∞) → Map[0,∞) is said to be causal, if for every (ε1, w1), (ε2, w2) ∈ D(H)
and every t > 0 we have the implication

ε1(τ) = ε2(τ), w1(τ) = w2(τ) ∀ τ ∈ [0, t] ⇒ H[ε1, w1](t) = H[ε2, w2](t).

Moreover, the operator H generates an operator H mapping (ε, w) with ε, w : Ω ×
[0,∞) → � such that (ε(x, ·), w(x, ·)) ∈ D(H) for a.e. x ∈ Ω to the function on Ω×
[0,∞) defined by H[ε, w](x, t) = H[ε(x, ·), w(x, ·)](t) for all t > 0 and for a.e. x ∈ Ω.
In the sequel, we will no longer distinguish between H and the generated operatorH.
The hysteresis phenomena described by hysteresis operators are often related to

changes between different configurations within the wire. In the system above, these
configurations are described by the phase parameter w, and the evolution of these
configurations is described by the phase evolution equation (1.4). By considering such
an equation, one can take into account relaxation processes that appear in addition to
the rate independent hysteresis loops, which are modelled by the hysteresis operators.
Let us recall some results for systems with hysteresis operators similar to the one

above. In [11], [17], [20], [21], [23], [26], [27], a multi-dimensional phase transition
is considered without taking mechanical effects into account. This corresponds to
investigating (1.3)–(1.5) without a dependence on u or σ. The one-dimensional
thermoelastoplastic hysteresis without considering relaxation processes in the phase
transition, i.e., (1.1)–(1.3) with no dependence on w, has been studied in [16], [18].
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For the complete system (1.1)–(1.7) above with an additional Ginzburg term uxxxx

on the left-hand side of (1.1) and boundary condition u = uxx = 0 on ∂Ω for u, the
global existence and uniqueness of a solution has been shown in [24].

The system (1.1)–(1.7) has been derived and investigated in [25]. Therein, the
existence, uniqueness, and regularity of a strong solution has been proved (see Theo-
rem 3 in Section 2.3), and it has also been shown that the Clausius-Duhem inequality
and therefore the second principle of thermodynamics is satisfied for the solution.

In the present work, we are dealing with the asymptotic behaviour for t → ∞
of the system under consideration. After discussing the assumptions in Section 2.1,
the results are presented in Theorem 1 and Theorem 2 in Section 2.2. The a priori
estimates derived in Section 3 are used in Section 4 to prove these theorems.

2. Asymptotic behaviour of solutions

2.1. Assumptions
The assumptions used in the investigation of the asymptotic behaviour of the

solution to (1.1)–(1.7) are now presented and discussed. Let C[0,∞) denote the set
of all continuous functions from [0,∞) to � , including also the unbounded ones. For
t > 0, the seminorm | · |[0,t] on C[0,∞) and on C[0, T ] for T > t is defined by

(2.1) |f |[0,t] = max
06s6t

|f(s)|.

We will use the following assumptions:

(H1) We have u0 ∈ H2(Ω), u1 ∈ W 1,∞(Ω), θ0 ∈ H1(Ω), w0 ∈ H1(Ω), and there is
some δ > 0 such that θ0(x) > δ for all x ∈ Ω. Moreover, the compatibility condition
u0(0) = u1(0) = 0 is satisfied.

(H2) We assume that g : Ω× (0,∞)× � → � is a Carathéodory function such that
there are functions g1, g2 : Ω∞ → [0,∞), with

g1 ∈ L1(Ω∞) ∩ L2(Ω∞), g2 ∈ L1(0,∞;L∞(Ω)) ∩ L2(0,∞;L∞(Ω),

|g(x, t, s)− g1(x, t)| 6 g2(x, t)s, g(x, t,−s) = g1(x, t) ∀ (x, t) ∈ Ω∞, s > 0.

(H3) The operators H1, . . . ,H4, F1 : C[0,∞) × C[0,∞) → C[0,∞) are causal and
map W 1,1

loc (0,∞)×W 1,1
loc (0,∞) into W 1,1

loc (0,∞). The operators map C[0, T ]×C[0, T ]
continuously into C[0, T ] for all T > 0, and for all ε, w ∈ C[0,∞)

F1[ε, w](t) > 0 ∀ t > 0.
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(H4) There exist causal operators F2 : W 1,1
loc (0,∞) × W 1,1

loc (0,∞) → W 1,1
loc (0,∞),

D1,D2 : W 1,1
loc (0,∞)×W 1,1

loc (0,∞) → L1
loc(0,∞), G : W 1,1

loc (0,∞) → W 1,1
loc (0,∞), and

a non-decreasing function k1 such that for all ε, w ∈W 1,1
loc (0,∞)

i) |D1[ε, w]| = εtH1[ε, w] + (G[w])tH3[ε, w]− (F1[ε, w])t a.e. in (0,∞),

|D2[ε, w]| = εtH2[ε, w] + (G[w])tH4[ε, w]− (F2[ε, w])t a.e. in (0,∞)

ii) |(G[w])t(t)|2 6 k1(|w|[0,t])wt(t)(G[w])t(t) for a.e. t ∈ (0,∞).

(H5) We have F1,0,F2,0 ∈ L1(Ω) such that for all ε, w ∈ W 1,1
loc (0,∞;L2(Ω)) with

ε(·, 0) = u0,x and w(·, 0) = w0 a.e. on Ω it holds that

F1[ε, w](·, 0) = F1,0, F2[ε, w](·, 0) = F2,0 a.e. in Ω.

(H6) There are non-decreasing functions k2, k3, k4 : [0,∞) → [0,∞) such that for all
ε, w ∈ C[0,∞)

i) max
16i64

|Hi[ε, w](t)| 6 k2(|ε|[0,t] + |w|[0,t]) ∀ t > 0.

ii) −F2[ε, w](t) 6 k3(|ε|[0,t] + |w|[0,t])(1 + F1[ε, w](t)) ∀ t > 0.

iii) If ε, w ∈W 1,1
loc (0,∞) then

max
16i64

|(Hi[ε, w])t(t)|+ |(F1[ε, w])t(t)|

6 k4(|ε|[0,t] + |w|[0,t])
(
|εt(t)|+

√
wt(t)(G[w])t(t)

)
for a.e. t ∈ (0,∞).

(H7) We have f ∈ L∞(0,∞;L2(Ω) and there exist functions f∞ ∈ L2(Ω), F ∈
L2(0,∞;H1(Ω) ∩ H1(0,∞;L2(Ω) ∩ L∞(Ω∞), and positive constants K0, K1 such
that

f − f∞ ∈ L1(0,∞;L2(Ω), F (x, t) =
∫ x

1

f(ξ, t) dξ for a.e. (x, t) ∈ Ω∞,

‖f∞‖L1(Ω)|ε(t)| 6 (1−K0)|F1[ε, w](t)|+K1 ∀ ε, w ∈ C[0,∞), t > 0.(2.2)

For the formulation of the remaining assumptions, we use the following notations,
which are well defined by (H1):

ε0,min := min{u0,x(x) : x ∈ Ω}, ε0,max := max{u0,x(x) : x ∈ Ω},(2.3)

w0,min := min{w0(x) : x ∈ Ω}, w0,max := max{w0(x) : x ∈ Ω}.(2.4)

(H8) For each ε∆ > 0, there exists ε− 6 ε0,min, ε+ > ε0,max, w∆ > 0, w− 6 w0,min,
and w+ > w0,max such that for all ε, w ∈ C[0,∞) and all t > 0,
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i) If ε(t) > ε+,

ε0,min 6ε(0) 6 ε0,max, ε− − ε∆ 6 ε(τ) 6 ε+ + ε∆ ∀ τ ∈ [0, t],(2.5)

w0,min 6w(0) 6 w0,max, w− − w∆ 6 w(τ) 6 w+ + w∆ ∀ τ ∈ [0, t],(2.6)

hold then we have

(2.7) H1[ε, w](t) > ‖F‖L∞(Ω∞), H2[ε, w](t) > 0.

ii) If ε(t) 6 ε−, (2.5), and (2.6) hold then we have

(2.8) H1[ε, w](t) 6 −‖F‖L∞(Ω∞), H2[ε, w](t) 6 0.

iii) If w(t) > w+, (2.5), and (2.6) hold then we have

(2.9) H3[ε, w](t) > 0, H4[ε, w](t) > 0.

iv) If w(t) 6 w−, (2.5), and (2.6) hold then we have

(2.10) H3[ε, w](t) 6 0, H4[ε, w](t) 6 0.

(H9) For every ε, w ∈W 1,1
loc (0,∞) with ε and w bounded and

∫ ∞

0

(|D1[ε, w](t)|+ |D2[ε, w](t)|) dt <∞,

there exists ε∞ ∈ � such that lim
t→∞

ε(t) = ε∞.

(H10) For every ε, w as in (H9), there exists w∞ ∈ � such that lim
t→∞

w(t) = w∞.

Before the asymptotic results will be presented in Section 2.2, the above assump-
tions are discussed, starting with considerations concerning relations to the physical
background.

����������

2.1. Thanks to (H1), there is a positive lower bound for the initial
temperature and the lower bound for g in (H2) ensures that this function does not
model any further cooling at absolute zero. Considering the free energy F , the
entropy S, and the internal energy U as in [25], i.e.

F [ε, w, θ] := CV θ(1− ln(θ)) + F1[ε, w] + θF2[ε, w],

S[ε, w, θ] := CV θ −F2[ε, w],

U [ε, w, θ] := CV θ + F1[ε, w],

315



the lower bound for F1 in (H3) yields that the internal energy is nonnegative. More-
over, the nonnegativity of the expressions on the right-hand sides of the equations
in (H5) i) is combined with (H5) ii) to prove that the system (1.1)–(1.7) is thermo-
dynamically consistent, see [25, Remark 3]. The functions D1 and D2 arising in (H4)
are related to the energy dissipation during a hysteresis loop.


����������
2.2. There are cases where the operators Hi are decoupled. For exam-

ple, the model for phase transition without mechanical effects as studied in [11], [17],
[20], [21], [23], [26] can be combined with the model considered in [16], [18], that is
the thermoelastoplastic hysteresis model without relaxation processes. In that case,
if one does not take into account any direct coupling between phase transitions and
mechanical effects, but only a coupling via the energy balance, one ends up with the
system (1.1)–(1.7) with H1 and H2 depending only on ux, and H3 and H4 depend-
ing only on w. Moreover, one is sometimes dealing with hysteresis operators arising
as the sum of a superposition operator and some well-known hysteresis operator.
Hence, we will investigate decoupled Hi of this form. Considering causal operators
H̃1, . . . , H̃4 : C[0,∞) → C[0,∞) and nonnegative functions h1, . . . , h4 ∈ C2( � ), we
can define the operators H1, . . . ,H4 by setting, for all ε, w ∈ C[0,∞) and all t > 0,

(2.11) Hi[ε, w](t) :=

{
h′i(ε(t)) + H̃i[ε](t) for i = 1, 2,

h′i(w(t)) + H̃i[w](t) for i = 3, 4.

For 1 6 i 6 4, we assume that we have a clockwise admissible potential and the
corresponding dissipation operator for H̃i, i.e. (see [3, Chapter 2.5]), we assume that
we have a causal operator F̃i : C[0,∞) → C[0,∞) which is mapping W 1,1

loc (0,∞) in
W 1,1

loc (0,∞) and a causal operator D̃i : W
1,1
loc (0,∞) → L1

loc(0,∞) with

(2.12) |D̃i[v]| = vtH̃i[v]− (F̃i[v])t a.e. in (0,∞), ∀ v ∈ W 1,1
loc [0,∞).

Then (H4) holds with G being the identity and F1, F2, D1, D2 defined by

Fj [ε, w](t) := hj(ε(t)) + F̃j [ε](t) + hj+2(w(t)) + F̃j+2[w](t),(2.13)

Dj [ε, w](t) := |D̃j [ε](t)|+ |D̃j+2[w](t)|,(2.14)

for all ε, w ∈ C[0,∞), t > 0, and j ∈ {1, 2}.
If h1(r) = h∗1r

2 with some positive constant h∗1 then the corresponding operatorH1

models a linear elasticity with a hysteretic modification.


����������
2.3. A sufficient condition for (H8) to be satisfied is that the two fol-

lowing assumptions (H11) and (H12) hold. These assumptions are especially useful,
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if the operators H1, . . . ,H4 are decoupled as in the Remarks 2.2, 2.5–2.6. The no-
tation of an outward pointing operator used in these assumptions is introduced and
discussed in [13].
The more general formulation in (H8) is helpful, if the operators are coupled,

e.g., if they are derived from multi-dimensional stop or Prandtl-Ishlinskii operators
(see, e.g., [15], [21], [22], [23]).

(H11) For each ε∆ > 0, there exists ε− 6 ε0,min and ε+ > ε0,max such that
for all w ∈ C[0,∞) with w0,min 6 w(0) 6 w0,max the operator mapping ε ∈
C[0,∞) to H1[ε, w] ∈ C[0,∞) is pointing outwards with bound ‖F‖L∞(Ω∞) in the
ε∆-neighbourhood of [ε−, ε+] for initial values in [ε0,min, ε0,max] and that the same
holds for H2 just with bound 0, that is to say for all ε ∈ C[0,∞) and all t > 0 holds:
i) If ε(t) > ε+ and (2.5) hold then we have (2.7).
ii) If ε(t) 6 ε− and (2.5) hold then we have (2.8).

(H12) There are w∆ > 0, w− 6 w0,min, and w+ > w0,max such that for all
ε ∈ C[0,∞) with ε0,min 6 ε(0) 6 ε0,max the operators C[0,∞) 3 w 7→ H3[ε, w]
and C[0,∞) 3 w 7→ H4[ε, w] are pointing outwards with bound 0 in the w∆-
neighbourhood of [w−, w+] for initial values in [w0,min, w0,max], that is to say for all
w ∈ C[0,∞) and t > 0 it holds that:
i) If w(t) > w+ and (2.6) hold then we have (2.9).
ii) If w(t) 6 w− and (2.6) hold then we have (2.10).

����������

2.4. If we use H̃3 = H̃4 ≡ 0 in Remark 2.2 then H3 and H4 are
superposition operators and the assumption (H12) holds if and only if there are
w∆ > 0, w− 6 w0,min, and w+ > w0,max such that
• For all s ∈ [w+, w+ + w∆] holds h′3(s) > 0, h′4(s) > 0.
• For all s 6 [w− − w∆, w−] holds h′3(s) 6 0, h′4(s) 6 0.

A similar condition has been used in [1], [32], [33]. If this condition is directly adapted
to hysteresis operators, one ends up with an assumption similar to (H12), but with
the condition (2.6) replaced by w−−w∆ 6 w(t) 6 w+ +w∆ only. This assumption is
stronger than (H12) and will be denoted by (H12+). There are important hysteresis
operators satisfying (H12), but not (H12+).
In a similar way, one can consider a stronger version (H11+) of (H11), where

ε− − ε∆ 6 ε(t) 6 ε+ + ε∆ is used instead of (2.5).

����������

2.5. If for the functions and operators in Remark 2.2 there are positive
constants K2,1, . . . ,K2,4 such that

|H̃i[v](t)| 6 K2,i ∀ t > 0, v ∈ C[0,∞), 1 6 i 6 4,(2.15)

± lim
r→±∞

h′1(r) > K2,1 + ‖F‖L∞(Ω∞),(2.16)

± lim
r→±∞

h′j(r) > K2,j ∀ 2 6 j 6 4,(2.17)
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then the assumptions (H11+) and (H12+) are satisfied. Hence, (H11), (H12), and
(H8) hold. Moreover, the condition (2.2) in (H7) is satisfied if the other assumptions
in (H7) hold.

����������

2.6. For 1 6 i 6 4, we consider a nonnegative weight function ϕi ∈
L1(0,∞) and a function σ0

i ∈ W 1,∞(0,∞) such that σ0
i (r) ∈ [−r, r] for all r > 0,

|(σ0
i )r| 6 1 a.e. on (0,∞), and σ0

r (r′) = 0 for all r′ > Ri for some Ri > 0. Moreover,
we consider yield limits ri,j ∈ � , initial values σ0

i,j ∈ [−ri,j , ri,j ], and weights ϕi,j > 0.
Now, we define H̃i : C[0,∞) → C[0,∞) as the Prandtl-Ishlinskii operator

(2.18) H̃i[v] :=
∫ ∞

0

ϕi(r)Sr [σ0
i (r), v] dr +

∑

j

ϕi,jSri,j [σ
0
i,j , v] ∀ v ∈ C[0,∞).

The more general definition of this operator involing a Stieljes integral, see, e.g. [15],
would allow to write this sum as one integral. A clockwise admissible potential for
this operator is defined by F̃i : C[0,∞) → C[0,∞) with

(2.19) F̃i[v] :=
1
2

∫ ∞

0

ϕi(r)S2
r [σ0

i (r), v] dr +
1
2

∑

j

ϕi,jS2
ri,j

[σ0
i,j , v]

for all v ∈ C[0,∞) since Proposition 2.5.5 in [3] and (1.12) yield that (2.12) holds
for

(2.20) D̃i[v] :=
∣∣∣∣
∂

∂t

∫ ∞

0

rϕi(r)Pr [σ0
r , v] dr

∣∣∣∣ +
∑

j

ϕi,j |(rPr[σ0
i,j , v])t|

for all v ∈ W 1,1
loc [0,∞). Defining now Hi and Fi as in Remark 2.2, and using well-

known properties of the stop operator one can show that (H3)–(H6) hold.
Since for oscillations that are smaller then the yield limit of a play operator, the

operator stays constant after the first oscillation, we can apply (2.14) and (2.20) to
deduce that (H9) holds, if and only if for all s > 0 the function ϕ1 + ϕ2 does not
vanish a.e. on [0, s]. For (H10), we get an analogous condition, just with ϕ1 + ϕ2

replaced by ϕ3 +ϕ4. If one wants to ensure as in Remark 2.2 that (H11) and (H12)
are satisfied, one has to require that 2.15 holds, which is equivalent to the condition

(2.21)
∫ ∞

0

rϕi(r) dr +
∑

j

ϕi,jri,j < K2,i < +∞ ∀ 1 6 i 6 4.

If this condition is satisfied, we see that (H11) and (H12) hold for appropriate func-
tions hi, but this argumentation can not be applied ifHi = H̃i for some i ∈ {1, . . . , 4}.
In [13], it is proved that (H12) holds for H3 := H̃3 and H4 := H̃4, independently

of (2.21). Moreover, it is shown there that for H1 := H̃1 the condition in (H11)
holds if and only if

∫∞
0
rϕ1(r) dr = ∞, and that an analogous equivalence holds for

H2 := H̃2.
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2.2. The asymptotic result
The following two theorems are the main result of this paper:

Theorem 1. Assume that (H1)–(H8) are satisfied. Moreover, assume that
(u, θ, w) is a solution to (1.1)–(1.7) such that

u ∈ H2
loc(0,∞;L2(Ω)) ∩H1

loc(0,∞;H2(Ω)),(2.22)

θ ∈ H1
loc(0,∞;L2(Ω)) ∩ L2

loc(0,∞;H2(Ω)),(2.23)

w ∈ H2
loc(0,∞;L2(Ω)) ∩H1

loc(0,∞;H2(Ω)),(2.24)

θ(x, t) > 0 ∀x ∈ Ω, t > 0.(2.25)

Then, it holds that

lim
t→∞

‖uxt(·, t)‖L2(Ω) = 0, lim
t→∞

‖ut(·, t)‖C(Ω) = 0,(2.26)

σ(·, t) → −F∞ as t→∞, in L2(Ω),(2.27)

lim
t→∞

‖θx(·, t)‖L2(Ω) = 0, lim
t→∞

‖θ(·, t)− θ(t)‖C(Ω) = 0,(2.28)

with

F∞(x) :=
∫ x

1

f∞(ξ) dξ, θ(t) :=
∫

Ω

θ(y, t) dy ∀x ∈ Ω, t > 0.(2.29)

In addition, we have a constant θ∗ > 0 such that

(2.30) θ(x, t) > θ∗ ∀x ∈ Ω, t > 0.


����������
2.7. We see that (2.26) yields that for t → ∞ the viscous part of the

stress tends to zero, and by (2.27) the stress tends to −F∞, which is the potential
corresponding to the limit f∞ for t→∞ of the applied force f . Moreover, by (2.28),
we see that the temperature becomes more and more uniform in space. It is an
open questions whether one can show convergence for θ, ux, or w under the general
assumptions of the theorem or if oscillations can appear up to t→∞.
Also in [33], where the system (1.1)–(1.3) with H1, H2, and F1 just being non-

linear superposition operators of ux has been considered, convergence for θ and ux

could only been proved by using additional assumptions. Corresponding additional
conditions are required here in part b) and c) of Theorem 2 below, and allow to show
the convergence of the temperature for t → ∞. If, in addition, H2 and H4 are spe-
cial operators, like, e.g. stop operators, one could also show some convergence for u
and w, by adapting the argument in [33, Lemma 4.5] to the more general situation
considered here.
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Now, convergence results are presented that can be proved using additional hy-
potheses.

Theorem 2. Assume that the assumptions of Theorem 1 are satisfied.
a) If G is the identity operator, then we have

lim
t→∞

‖wt(·, t)‖L2(Ω) = 0, lim
t→∞

‖ψ(·, t)‖L2(Ω) = 0,(2.31)

lim
t→∞

‖(F1[ux, w])t(·, t)‖L2(Ω) =
4∑

i=1

lim
t→∞

‖(Hi[ux, w])t(·, t)‖L2(Ω) = 0.(2.32)

b) If H1 ≡ H3 ≡ F1 ≡ 0, g ≡ 0, and f ≡ 0, then we have

θ(·, t) → ‖θ0‖L1(Ω) +
%

2CV
‖u1‖2

L(Ω) as t→∞, in L∞(Ω),(2.33)

lim
t→∞

‖H2[ux, w](·, t)‖L2(Ω) = 0.(2.34)

c) If H1 ≡ H3 ≡ F1 ≡ 0, g ≡ 0, f ≡ 0, and G is the identity operator, then we
have

(2.35) lim
t→∞

‖H4[ux, w](·, t)‖L2(Ω) = 0.

d) If (H9) holds then there exists a u∞ ∈W 1,∞(Ω) such that

u(·, t) → u∞ as t→∞, weakly-star in W 1,∞(Ω),(2.36)

ux(·, t) → u∞,x as t→∞, a.e. in Ω.(2.37)

e) If (H10) holds then there exists a w∞ ∈ L∞(Ω) such that

(2.38) w(·, t) → w∞ as t→∞, weakly-star in L∞(Ω) and a.e. in Ω.


����������
2.8. If (H8) does not hold then one can still prove the results in The-

orem 1 and some of the results in Theorem 2, if some other additional assumptions
are satisfied.
i) If (H4) and (H6) with k1, . . . , k4 replaced by positive constants hold then one
can still show the results in Theorem 1 and the results in Theorem 2a)–c) hold.

ii) If (H11), (H4) ii) with k1 replaced by a positive constant, and (H6) without the
|w|[0,t]-term in the evaluation of k2, k3, k4 hold then one can prove that the
results in Theorem 1 and the results in Theorem 2a)–d) hold.

iii) If (H12) and (H6) without the |ε|[0,t]-term in the evaluation of k2, k3, k4 hold
then one can prove the results in Theorem 1 and the results in Theorem 2 a)–c)
and e) hold.
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2.3. Existence of solutions
Before proving the asymptotic result, it will be recalled that there is a solution

to the problem under consideration satisfying the regularity and positivity demands
presented in Theorem 1, at least if some additional assumptions are satisfied. These
assumptions will be

(H13) f ∈ H1
loc(0,∞;L2(Ω)).

(H14) The function g1 arising in (H2) satisfies g1 ∈ L∞loc(Ω∞) and for every T > 0
there is a positive constant K3,T such that |∂g/∂θ| 6 K3,T a.e. in Ω× (0, T )× � .
(H15) For every T > 0 there are positive constants K4,T , . . . ,K7,T and non-
decreasing functions k5,T , k6,T : [0,∞) → [0,∞) such that for all ε, ε1, ε2, w, w1, w2 ∈
C[0,∞) the following holds:
i) We have for all t ∈ [0, T ]:

|H2[ε, w](t)| + |H4[ε, w](t)| 6 K4,T ,

max
16i64

|Hi[ε1, w1](t)−Hi[ε2, w2](t)| 6 K5,T (|ε1 − ε2|[0,t] + |w1 − w2|[0,t]).

ii) If ε, ε1, ε2, w, w1, w2 ∈ W 1,1
loc (0,∞) then the inequality in (H4) ii) with k1(|w|[0,t])

replaced by K6,T holds for a.e. t ∈ (0, T ) and

max
16i64

|(Hi[ε, w])t(t)| 6 K7,T (|εt(t)|+ |wt(t)|) for a.e. t ∈ (0, T ),

|F1[ε, w])t(t)| 6 k5,T (|ε|[0,t] + |w|[0,t])(|εt(t)|+ |wt(t)|)(2.39)

for a.e. t ∈ (0, T ),

|F1[ε1, w1](t)−F1[ε2, w2](t)(2.40)

6 k6,T (|ε1|[0,t] + |ε2|[0,t] + |w1|[0,t] + |w2|[0,t])

×
(
|ε1(0)− ε2(0)|+ |w1(0)− w2(0)|

+
∫ t

0

(|ε1,t(τ) − ε2,t(τ)| + |w1,t(τ) − w2,t(τ)|) dτ
)

∀ t ∈ [0, T ].

One can extend Theorem 2.1 in [25] to the following result:

Theorem 3. Assume that (H1)–(H3), (H4) i), and (H13)–(H15) are valid. Then
the system (1.1)–(1.7) has a unique strong solution (u, θ, w) such that (2.22)–(2.24)
hold. This solution also satisfies (2.25).

The original existence result in [25] has been formulated with a stronger version of
the assumption (H15), where k5,T (· · ·) in (2.39) and k6,T (· · ·) in (2.40) are replaced
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by positive constants. Combining this stronger assumption with (H4) i) and the con-
tinuity of F1 on C[0, T ]× C[0, T ] (see (H3)), it follows that H1 and H3 have to be
uniformly bounded. However, uniform boundedness is not satisfied in many impor-
tant situations, e.g., if H1, defined as in (2.11), is modelling a linear elasticity with
a bounded hysteretic modification as in Remark 2.2. Using the assumption (H15)
allows to apply the existence result above also in this situation. In [24], the au-
thors of [25] consider a hypothesis analogous to (H15) for a modified version of the
system (1.1)–(1.7).

We now sketch the proof of Theorem 3: We observe that, in the global existence
proof in [25], the stronger versions of (2.39) and (2.40) are applied after the uniform
estimates for ux and w have been derived. To perform the a priori estimates, it
suffices to use just (2.39) and (2.40). Moreover, (2.39) and (2.40) also suffice for the
local existence result in [25, Section 3], as can be seen from a careful examination
of the proof. Details can be found in the forthcoming paper [12]. Therein, it is also
shown that one can replace the boundedness of H2 and H4, as assumed in (H15) i),
by the hypothesis for F2 in (H6) i). One is then able to consider the case where one
assumes (H11) for H2 consisting of Prandtl-Ishlinskii operators depending only on ε.
In this case, H2 is unbounded, see Remark 2.6.


����������
2.9. For nonnegative functions h1, . . . , h4 ∈ C2( � ) with h′′1 , h

′′
3 ∈

L∞( � ), h′2, h′4 ∈ W 1,∞( � ), and operators H̃1, . . . , H̃4 as in Remark 2.6 with nonneg-
ative weight functions ϕ1, . . . , ϕ4 ∈ L1(0,∞) satisfying (2.21) one can use well-known
properties of the stop operator (see, e.g., [3], [14], [15], [36]) to show that (H15) holds.

3. Uniform a priori estimates

In this section, it will be assumed that (H1)–(H8) are satisfied and that a solution
(u, θ, w) to (1.1)–(1.7) is given, such that (2.22)–(2.25) hold. To prepare the proof of
the asymptotic results in the next section, some a priori estimates are derived that
are uniform with respect to time.

Before this is done, we consider the energy balance and derive an immediate
consequence:


����������
3.1. Multiplying (1.1) by ut and adding the result to the balance

law (1.3) for the internal energy, we get the balance law for the energy

(3.1)

(
CV θ+

%

2
u2

t +F1[ux, w]
)

t

− κθxx = (ut(µutx + σ))x + g+ utf a.e. in Ω∞.
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For t > 0, we integrate this equation over Ω× (0, t), and use Green’s formula, (1.6),
(1.7), (H1), and (H5), to show that

(3.2) CV θ(t) +
%

2
‖ut(·, t)‖2

L2(Ω) = I0 + I1(t) ∀ t > 0

holds for the θ defined in (2.29),

I0 := CV ‖θ0‖L1(Ω) +
%

2
‖u1‖2

L2(Ω) +
∫

Ω

F1,0(x) dx > 0,(3.3)

I1(t) :=
∫ t

0

∫

Ω

(g(x, τ, θ(x, τ)) + ut(x, τ)f(x, τ)) dx dτ(3.4)

−
∫

Ω

(F1[ux, w](x, t)) dx ∀ t > 0.

In the sequel, for 1 6 p <∞, the notation ‖ ·‖p will be used as an abbreviation for
the Lp(Ω)-norm, and ‖·‖∞ will denote the C(Ω)-norm, i.e., the maximum norm on Ω.
Moreover, Ci, for i ∈ � , will always denote generic positive constants, independent
of time, space, and the considered solution.

Thanks to (2.22)–(2.25) and (H3), we can assume without losing generality that
σ and ψ are continuous (maybe unbounded) functions on Ω∞ = Ω × [0,∞), such
that (1.2) and (1.5) hold for all (x, t) ∈ Ω∞. Because of (1.7), (2.3), (2.4), we can
apply the assumption (H8) for ε(·) := ux(x, ·) and w(·) := w(x, ·). For the sake
of notational convenience, we assume in the remaining part of this section without
losing generality that % = µ = CV = κ = ν = 1.

In the following estimates, some ideas from [25], [33], [35] are used.

Lemma 3.2. There are two positive constants C1, C2 such that

sup
06t

(‖θ(·, t)‖1 + ‖ut(·, t)‖2 + ‖F1[ux, w](·, t)‖1) 6 C1,(3.5)

∫ ∞

0

(‖g(·, t, θ(·, t))‖1 + ‖g(·, t, θ(·, t))‖2
1) dt 6 C2.(3.6)

���������
. Let

(3.7) Ψ(t) :=
∫

Ω

(F1[ux, w](x, t) − f∞(x)u(x, t) +K1) dx ∀ t > 0.
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Now, we get from (3.2) by using (2.29), (2.25), (3.3), (3.4), Hölder’s inequality,
Young’s inequality, (H1), (H2), (H5), and (H7) that for all t > 0

(
‖θ(·, t)‖1 +

1
2
‖ut(·, t)‖2

2 + Ψ(t)
)

(3.8)

< C3 +
∫ t

0

(‖g2(·, t)‖∞‖θ(·, τ)‖1 + ‖g1(·, τ)‖1) dτ

+
1
2

∫ t

0

(‖f(·, τ)− f∞‖2 + ‖f(·, τ)− f∞‖2 ‖ut(·, τ)‖2
2) dτ.

By (3.7), Hölder’s inequality, (1.6), (H3), and (H7), we have

Ψ(t) > K0‖F1[ux, w](·, t)‖1 ∀ t > 0.

Hence, because of (3.8), we can apply Gronwall’s Lemma, (H2), and (H7) to show
that (3.5) and (3.6) are satisfied. �

To prepare the following estimates, we now consider the transformation due to
Andrews [1], which is also used, e.g., in [32], [33], [25], and introduce functions
p, q, σ̃ : Ω∞ → � that are defined by

p(x, t) :=
∫ x

1

ut(ξ, t) dξ, q(x, t) := ux(x, t)− p(x, t) ∀ (x, t) ∈ Ω∞,(3.9)

σ̃(x, t) := σ(x, t) + F (x, t) ∀ (x, t) ∈ Ω∞,(3.10)

with F as in (H7). Recalling (1.1)–(1.7) and (H7), we see that

pt − pxx = σ̃ a.e. in Ω∞,(3.11)

p(1, t) = px(0, t) = 0 a.e. in (0, T ),(3.12)

p(x, 0) =
∫ x

1

u1(ξ) dξ a.e. in Ω,(3.13)

qt = −σ̃ a.e. in Ω,(3.14)

q(x, 0) = u0,x(x) −
∫ x

1

u1(ξ) dξ a.e. in Ω.(3.15)

Lemma 3.3. There are positive constant C4, C5 such that

sup
06t

(‖px(·, t)‖2 + ‖p(·, t)‖∞) 6 C4,(3.16)

sup
06t

(‖ux(·, t)‖∞ + ‖w(·, t)‖∞ + ‖u(·, t)‖∞ + ‖q(·, t)‖∞) 6 C5.(3.17)

���������
. In the light of the estimate for ut in (3.5) and the definition of p in (3.9),

we see that (3.16) holds. Considering (H8) for ε∆ := 2C4 + 1, we get ε− < ε0,min,
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ε0,max < ε+, w− < w0,min, and w+ > w0,max such that the remaining conditions
in (H8) are satisfied. Now,

(3.18) ux(x, t) ∈ [ε− − 2C4, ε+ + 2C4], w(x, t) ∈ [w−, w+] ∀ (x, t) ∈ Ω∞

is proved by contradiction. Suppose that (3.18) does not hold. Then there is some
δ ∈ (0,min{w∆, 1}) such that ux 6 ε− − 2C4 − δ and/or ux > ε+ + 2C4 + δ and/or
w 6 w− − δ and/or w > w+ + δ somewhere in Ω∞. We have ux(x, 0) = u0,x(x) ∈
[ε−, ε+] and w(x, 0) = w0(x) ∈ [w−, w+] for all x ∈ Ω because of (2.3) and (2.4).
Since (2.22) and (2.24) yield that w and ux are continuous on Ω∞, we get x1 ∈ Ω,
t1 > 0 such that

{
ux(x1, t1) ∈ {ε− − 2C4 − δ, ε+ + 2C4 + δ}
and/or w(x1, t1) ∈ {w+ + δ, w− − δ},

(3.19)

ε− − 2C4 − δ < ux(x, t) < ε+ + 2C4 + δ ∀ t ∈ [0, t1), x ∈ Ω,(3.20)

ε− − 2C4 − δ 6 ux(x, t1) 6 ε+ + 2C4 + δ ∀x ∈ Ω,(3.21)

w− − δ < w(x, t) < w+ + δ ∀ t ∈ [0, t1), x ∈ Ω,(3.22)

w− − δ 6 w(x, t1) 6 w+ + δ ∀x ∈ Ω.(3.23)

Hence, we see that (2.5) with ε := ux(x, ·) and (2.6) with w := w(x, ·) hold for all
x ∈ Ω and t 6 t1, and it remains only to check the first condition in (H8) i)–iv) if one
wants to apply one the corresponding inequalities (2.7)–(2.10). Since ux and w are
uniformly continuous on Ω × [0, t1], there is some open neighborhood U ⊂ Ω of x1

such that

(3.24) |ux(x, t)− ux(x1, t)|+ |w(x, t) − w(x1, t)| 6
δ

8
∀x ∈ U, t′ ∈ [0, t1].

Now, we consider the case ux(x1, t0) = ε+ + 2C4 + δ. Since ux is continuous on
Ω× [0, t1] and ux(x1, 0) 6 ε+, we get some t0 ∈ (0, t1) such that

(3.25) ε+ +
δ

2
= ux(x1, t0), ε+ +

δ

2
< ux(x1, t) < ε+ + 2C4 + δ ∀ t ∈ (t0, t1).

Combining this with (3.24), we conclude that ux(x, t) > ε+ for all x ∈ U , t ∈ (t0, t1).
In the light of (2.7) in (H8) i), we see that

(3.26) ‖F‖L∞(Ω∞) 6 H1[ux, w](x, t), 0 6 H2[ux, w](x, t) ∀x ∈ U, t ∈ (t0, t1).

Applying (1.2) and the fact that θ > 0 on Ω∞ by (2.25), we observe that σ > −F
a.e. in U × (t0, t1). Thanks to (3.14) and (3.10), we deduce that qt 6 0 a.e. in
U × (t0, t1). This leads to

∫

U

(q(x, t1)− q(x, t0)) dx dτ =
∫

U

∫ t1

t0

qt(x, t) dt dx 6 0.
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On the other hand, using (3.9), (3.16), (3.24), (3.25), and ux(x1, t0) = ε+ + 1
2δ, we

conclude that

∫

U

(
q(x, t1)− q(x, t0)

)
dx >

∫

U

(
ux(x, t1)− C4 − (ux(x, t0) + C4)

)
dx

>
∫

U

(
ux(x1, t1)−

δ

8
−

(
ux(x1, t0) +

δ

8

)
− 2C4

)
dx

>
∫

U

δ

4
dx > 0.

Hence, we have derived a contradiction. By an analogous argument, we get a con-
tradiction if ux(x1, t1) = ε− − 2C4 − δ.

Now, we will deal with the case of w(x1, t1) = w+ + δ. Applying the continuity
of w, we get some t0 ∈ (0, t1) such that

(3.27) w(x1, t0) = w+ +
δ

2
, w+ +

δ

2
< w(x1, t) < w+ + δ ∀ t ∈ (t0, t1).

Combining this with (3.24), we see that w(x, t) > w+ for all x ∈ U , t ∈ (t0, t1).
Therefore, we conclude from (2.9) in (H8) iii) that

(3.28) H3[ux, w](x, t) > 0, H4[ux, w](x, t) > 0 ∀x ∈ U, t ∈ (t0, t1).

Since θ > 0 a.e. on Ω∞ by (2.25), we deduce now from (1.5) and (1.4) that wt 6 0
a.e. in U × (t0, t1). This leads to

∫

U

(w(x, t1)− w(x, t0)) dx =
∫

U

∫ t1

t0

wt(x, t) dt dx 6 0.

Since w(x1, t1) = w+ + δ, (3.27), and (3.24) yield that the integral on the left-hand
side has to be positive, we have derived a contradiction. An analogous argument to
get a contradiction can be used if w(x1, t1) = w− − δ.

Hence, we have derived a contradiction for all cases we have to consider by (3.19).
Therefore, we have proved (3.18). Recalling (1.6) and (3.9), we get also uniform
bounds for u and q, and (3.17) is proved. �


����������
3.4. Because of (3.17), we have uniform bounds for ux and w. Thanks

to (H6), (3.5), (1.2), (1.5), and (1.4), we see that there are positive constants C6,
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C7, . . . , C9 such that

max
16i64

sup
06t

(‖Hi[ux, w](·, t)‖∞) 6 C6,(3.29)

|σ|+ |wt| 6 C7(1 + θ) a.e. in Ω∞,(3.30)

0 6 sup
06t

∫ 1

0

(−F2[ux, w](x, t)) dx 6 C8,(3.31)

max
16i64

|(Hi[ux, w])t|+ |(F1[ux, w])t| 6 C9

(
|uxt|+

√
wt(G[w])t

)
(3.32)

a.e. in Ω∞.

Since (3.17) and (H4) ii) yield that 0 6 wt(G[w])t 6 C10w
2
t a.e. in Ω∞, we deduce

that

(3.33) max
16i64

|(Hi[ux, w])t|+ |(F1[ux, w])t| 6 C11(|uxt|+ |wt|) a.e. in Ω∞.

We apply (H4) i), (1.2), (1.5), (1.4), and (H4) ii) to conclude that, a.e. on Ω∞, it
holds that

(F1[ux, w])t − σ(x, t)uxt(3.34)

= (G[w])tH3[ux, w]− |D1[ux, w]| − θH2[ux, w]uxt

= − |(G[w])twt| − |D1[ux, w]|
− θ(H2[ux, w]uxt + (G[w])tH4[ux, w]).

Lemma 3.5. We have a positive constant C12 such that
∫ ∞

0

(∥∥∥∥
θx

θ
(·, t)

∥∥∥∥
2

2

+
∥∥∥∥
uxt√
θ
(·, t)

∥∥∥∥
2

2

+
∥∥∥∥

(G[w])twt

θ
(·, t)

∥∥∥∥
1

)
dt(3.35)

+
∫ ∞

0

‖D2[ux, w](·, t)‖1 dt+ sup
06t

‖ln θ(·, t))‖1 6 C12.

���������
. Testing (1.3) by −1/θ and using (1.6), (3.34), (H2), and (H4) i), we

observe that

− ∂

∂t

∫

Ω

ln θ(x, t) dx+
∫

Ω

((
θx(x, t)
θ(x, t)

)2

+
u2

xt(x, t)
θ(x, t)

)
dx

6 − ∂

∂t

∫

Ω

F2[ux, w](x, t) dx−
∫

Ω

|(G[w])t(x, t)wt(x, t)|+ |D1[ux, w](x, t)|
θ(x, t)

dx

+
∫

Ω

(−|D2[ux, w](x, t)| + |g2(x, t)|) dx.

Now, we integrate this equation over time and observe that (3.35) follows by apply-
ing (3.31), (H2), (H5), (3.5), and the inequality |ln s| 6 s− ln s for all s > 0, which
can be proved by elementary analysis. �
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Lemma 3.6. We have a positive constant C13 such that

∫ ∞

0

(
‖uxt(·, t)‖2

1 + ‖ut(·, t)‖2
∞ + ‖p(·, t)‖2

∞ + ‖(G[w])t(·, t)‖2
1(3.36)

+ ‖(F1[ux, w])t‖2
1 +

∥∥(
√
θ)x(·, 1)

∥∥2

1

)
dt 6 C13.

���������
. Since θ > 0 a.e. on Ω∞, we can apply Schwarz’s inequality and (3.5) to

show that for all t > 0

(3.37) ‖uxt(·, t)‖1 =
∫

Ω

|uxt(x, t)|√
θ(x, t)

√
θ(x, t) dx 6 C14

∥∥∥∥
uxt√
θ
(·, t)

∥∥∥∥
2

.

Recalling now (3.35) leads to the estimate for uxt in (3.36). Using that, by (1.6) and
(2.22), ut(y, t) =

∫ y

0
uxt(x, t) dx for all y ∈ Ω, we get the estimate for ut. Combining

this estimate with (3.9) leads to the estimate for p.
Applying (3.32), (H4) ii), (3.35), and Young’s inequality, we deduce that

∫ ∞

0

(∥∥∥∥
(G[w])t√

θ
(·, t)

∥∥∥∥
2

2

+
∥∥∥∥

(F1[ux, w])t√
θ

(·, t)
∥∥∥∥

2

2

)
dt 6 C15.

Considering now (3.37) with uxt replaced by (G[w])t, we get the estimate for (G[w])t

in (3.36), and the estimate for (F1[ux, w])t is derived analogously. Thanks to
Schwarz’s inequality, we have

∥∥(
√
θ)x(·, t)

∥∥
1

=
∫

Ω

|θx(x, t)|√
θ(x, t)

dx 6
∥∥∥∥
|θx|
θ

(·, t)
∥∥∥∥

2

∥∥√θ(·, t)
∥∥

2
.

In the light of (3.5) and (3.35), we see that also the estimate for
√
θx in (3.36) is

established. �

Lemma 3.7. For θ and I1 as in (2.29) and (3.4) there are positive constant C16,
C17, and C18 such that

|I1(t)| 6 C16, C17 < θ(t) < C18 ∀ t > 0,(3.38)

‖θ(·, t)− θ(t)‖∞ 6 ‖θx(·, t)‖1 6 ‖θx(·, t)‖2 ∀ t > 0.(3.39)

���������
. Combining (3.4), (3.6), (1.7), (3.5), and Hölder’s inequality, we see that

|I1(s)| 6 C19 +
∣∣∣∣
∫

Ω

(u(x, s) − u0(x))f∞(x) dx
∣∣∣∣ +

∫ s

0

‖f(·, t)− f∞(t)‖2 ‖ut(·, t)‖2 dt.
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Recalling (3.17), (3.5), (H7), and (H1), we get the uniform bound for I1 in (3.38).
Since s 7→ − ln s is a convex function on (0,∞), we get by (2.25) and Jensen’s
inequality that

− ln
∫

Ω

θ(x, t) dx 6 −
∫

Ω

ln(θ(x, t)) dx ∀ t > 0.

Invoking now (3.35), (2.29), and (3.5), we get (3.38). The first inequality in (3.39)
follows from the definition in (2.29), and the second by applying Schwarz’s inequality
and

∫
Ω

1 dx = 1. �

Lemma 3.8. We have a positive constant C20 such that

∫ ∞

0

(
‖θx(·, t)‖2

2 +
∥∥∥∥
∂

∂x
((ut)2)(·, t)

∥∥∥∥
2

2

+
(
∂I1(t)
∂t

)2)
dt(3.40)

+ sup
06t

(‖ut(·, t)‖4 + ‖θ(·, t)‖2) 6 C20.

���������
. We test (3.1) by θ + 1

2u
2
t and (1.1) by αu

3
t where α > 0 will be fixed

later. Summing the resulting equations and using (1.6) and (3.4), we observe that
for all t > 0

1
2
∂

∂t

∥∥∥∥θ(·, t) +
1
2
u2

t (·, t)
∥∥∥∥

2

2

+ ‖θx(·, t)‖2
2 +

α

4
∂

∂t
‖ut(·, t)‖4

4(3.41)

+ (1 + 3α)‖ut(·, t)utx(·, t)‖2
2

6 θ(t)
∂I1(t)
∂t

+ I2(t) + I3(t) + I4(t),

with

I2(t) :=
∫

Ω

(−(F1[ux, w])t(x, t) + g(x, t, θ(x, t)) + ut(x, t)f(x, t))(3.42)

× (θ(x, t)− θ(t)) dx,

I3(t) := −
∫

Ω

(
1
2
(F1[ux, w])tu

2
t + 2θxututx + utσθx(3.43)

+ (1 + 3α)u2
tutxσ

)
dx,

I4(t) :=
∫

Ω

(g + (1 + 2α)utf)
1
2
u2

t dx.(3.44)

In the sequel, the generic constants Ci will be independent of α. We estimate the left-
hand side of (3.42) by using Hölder’s inequality, (H7), (3.39), and Young’s inequality,
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resulting in

I2(t) 6 (‖(F1[ux, w])t(·, t)‖1 + ‖g(·, t, θ(·, t))‖1 + ‖ut(·, t)‖∞‖f(·, t)‖1)(3.45)

× ‖θ(·, t)− θ(t)‖∞
6 C21(‖(F1[ux, w])t(·, t)‖2

1 + ‖g(·, t, θ(·, t))‖2
1 + ‖ut(·, t)‖2

∞)

+
1
6
‖θx(·, t)‖2

2.

Invoking (3.43), (3.33), (3.30), Hölder’s inequality, and Young’s inequality, we deduce
that

I3(t) 6 C22((1 + α)‖utx(·, t)u2
t (·, t)‖1 + ‖u2

t (·, t)‖1 + ‖u2
t (·, t)θ(·, t)‖1)(3.46)

+ 2‖θx(·, t)ut(·, t)utx(·, t)‖1 + C23‖ut(·, t)θx(·, t)‖1

+ C24‖θx(·, t)ut(·, t)θ(·, t)‖1 + (1 + α)C25‖u2
t (·, t)utx(·, t)θ(·, t)‖1

6 C26‖ut(·, t)utx(·, t)‖2
2 + C27(1 + α2)‖ut(·, t)‖2

2

+ C28(1 + α2)‖ut(·, t)‖2
∞‖θ(·, t)‖2

2 +
1
6
‖θx(·, t)‖2

2.

Using (3.44), (H2), Hölder’s inequality, (3.5), (H7), (3.39), (3.38), and Young’s in-
equality, we conclude that

2I4(t) 6 ‖g1(·, t)‖2‖ut(·, t)‖2‖ut(·, t)‖∞(3.47)

+ (θ(t) + ‖θ(·, t)− θ(t)‖∞)‖g2(·, t)‖∞‖ut(·, t)‖2
2

+ (1 + 2α)‖ut(·, t)‖2‖f(·, t)‖2‖ut(·, t)‖2
∞

6 1
6
‖θx‖2

2 + C29(‖g1(·, t)‖2
2 + ‖g2(·, t)‖∞ + ‖g2(·, t)‖2

∞)

+ C30(1 + α2)‖ut(·, t)‖2
∞.

Because of (3.2) and Young’s inequality, we have

(3.48) θ(t)
∂I1(t)
∂t

6 I0
∂I1(t)
∂t

+
1
2
∂

∂t
(I1(t))2 +

1
4
‖ut(·, t)‖4

2 +
1
4

(
∂I1(t)
∂t

)2

.

From (3.4), we get by using Hölder’s inequality, Young’s inequality, (H7), and (H2)
that

(3.49)

(
∂I1(t)
∂t

)2

6 C31(‖g(·, t, θ(·, t))‖2
1 + ‖ut(·, t)‖2

2 + ‖F1[ux, w])t(·, t)‖2
1).
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Now, we integrate the sum of (3.41) and (3.49) over time, and use (1.7), (H1),
(3.45)–(3.49), (3.6), (H2), (3.5), (3.36), (3.38), and θ > 0 a.e. on Ω to show that

1
2
‖θ(·, s)‖2

2 +
α

4
‖ut(·, s)‖4

4

+
∫ s

0

(
1
2
‖θx(·, t)‖2

2 + (1 + 3α)‖ut(·, t)utx(·, t)‖2
2 +

3
4

(
∂I1(t)
∂t

)2)
dt

6 C32

(
1 + α2 +

∫ s

0

(‖ut(·, t)utx(·, t)‖2
2 + (1 + α2)‖ut(·, t)‖2

∞‖θ(·, t)‖2
2) dt

)

holds for all s > 0. Next, we define α := C32, apply Gronwall’s Lemma, and
recall (3.36) to show that (3.40) is satisfied. �

Lemma 3.9. There are positive constants C33, C34 such that
∫ ∞

0

(‖uxt(·, t)‖2
2 + ‖(G[w])t(·, t)wt(·, t)‖1 + ‖D1[ux, w](·, t)‖1) dt 6 C33,(3.50)

∫ ∞

0

(‖pxx(·, t)‖2
2 + ‖(p+ q)t(·, t)‖2

2 + ‖ut(·, t)‖2
∞ + ‖(F1[ux, w])t(·, t)‖2

2(3.51)

+
4∑

i=1

‖(Hi[ux, w])t(·, t)‖2
2 + ‖(G[w])t(·, t)‖2

2) dt 6 C34.

���������
. Integrating (1.3) over Ω, and applying (1.6), (2.29), (3.34), and (H4) ii),

we derive

‖uxt(·, t)‖2
2 6 ∂θ(t)

∂t
+ ‖g(·, t, θ(·, t))‖1 − ‖(G[w])t(·, t)wt(·, t)‖1 − ‖D1[ux, w](·, t)‖1

−
∫

Ω

(θ(x, t) − θ(t))(H2[ux, w](x, t)uxt(x, t) + (G[w])t(x, t)H4[uw, w](x, t)) dx

− θ(t)
∂

∂t

∫

Ω

F2[ux, w](x, t) dx.

We multiply this inequality by 1/θ(t) and use (3.29), Hölder’s inequality, and Young’s
inequality to prove

1
θ(t)

(‖uxt(·, t)‖2
2 + ‖(G[w])t(·, t)wt(·, t)‖1 + ‖D1[ux, w](·, t)‖1)

6 ∂ ln θ(t)
∂t

+
1
θ(t)

‖g(·, t, θ(·, t))‖1 −
∂

∂t

∫

Ω

F2[ux, w](x, t) dx

+
C35

θ(t)
(‖θ(·, t)− θ(t)‖2

∞ + ‖uxt(·, t)‖2
1 + ‖(G[w])t(·, t)‖2

1).

Integrating this inequality over time, and using (3.6), (3.38), (3.39), (3.36), and
(3.40), we observe that (3.50) is proved. The estimates in (3.51) follow by apply-
ing (3.9), (1.6), (3.32), (H4), and (3.17). �
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Lemma 3.10. There is a positive constant C36 such that

(3.52)
∫ ∞

0

(‖σ̃(·, τ)‖2
2 + ‖pt(·, τ)‖2

2) dτ 6 C36.

���������
. Let J(x, t) : Ω∞ → � be defined by

J(x, t) := σ̃(x, t) +H2[ux, w](x, t)
(
θ(t)− θ(x, t) +

1
2
‖ut(·, t)‖2

2(3.53)

+
∫ x

1

(f∞(ξ)− f(ξ, t)) dξ
)
a.e. in Ω.

Using (3.11) two times, we get

(σ̃(x, t))2 = pt(x, t)σ̃(x, t) − pxx(x, t)σ̃(x, t)

= pt(x, t)J(x, t) + (σ̃(x, t) + pxx(x, t))(σ̃(x, t) − J(x, t))

− pxx(x, t)σ̃(x, t).

Integrating this equation over Ω, and using Young’s inequality, (3.53), (3.29), and
(3.39), we observe that

1
2
‖σ̃(·, t)‖2

2 6 ∂

∂t

∫

Ω

p(x, t)J(x, t) dx−
∫

Ω

p(x, t)
∂J(x, t)
∂t

dx(3.54)

+ C37(‖pxx(·, t)‖2
2 + ‖θx(·, t)‖2 + ‖ut(·, t)‖4

2

+ ‖f(·, t)− f∞(·, t)‖2
1).

Applying (3.53), (3.10), (1.2), (H7), and (3.2), we observe that

(3.55) J(x, t) = H1[ux, w](x, t) +H2[ux, w](x, t)(I1(t) + I0) +
∫ x

1

f∞(ξ) dξ.

Hence, using (3.29), (3.38), (H7), Hölder’s inequality, Young’s inequality, (3.36),
(3.51), and (3.40), we get uniform bounds for J and, for all s > 0,

−
∫ s

0

∫

Ω

p(x, t)
∂J(x, t)
∂t

dx dt 6
∫ s

0

(
‖p(·, t)‖2

∞ +
∥∥∥∥
∂J(·, t)
∂t

∥∥∥∥
2

2

)
dt 6 C38.

Integrating now (3.54) with respect to time and using (3.16), (3.51), (3.40), (3.5),
(3.36), and (H7), we have shown the estimate for σ̃ in (3.52). Combining this estimate
with (3.11) and (3.51), we get the estimate for pt. �
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Lemma 3.11. Let ζ ∈ L2
loc(0,∞;H2(Ω)) ∩H1

loc(0,∞;L2(Ω)) be the solution to
the parabolic initial-boundary value problem

ζt − ζxx = σ̃t a.e. in Ω∞,(3.56)

ζx(0, t) = ζ(1, t) = 0 ∀ t > 0, ζ(·, 0) ≡ 0.(3.57)

Then we have a positive constant C39 such that, for all t > 0,

(3.58) ‖ζ(·, t)‖2
∞ 6 C39

(
1 + max

06τ6t
‖θ(·, τ)‖3/2

∞ +
(∫ t

0

‖θt(·, τ)‖2
2 dτ

)3/4)
.

���������
. Multiplying (3.56) by ζ, integrating over Ω× (0, T ), performing partial

integrations, and using (3.57), we get for all t > 0

1
2
‖ζ(·, t)‖2

2 +
∫ t

0

‖ζx(·, τ)‖2
2 dτ(3.59)

=
∫ t

0

∫

Ω

σ̃t(x, τ)ζ(x, τ) dx dτ

=
∫

Ω

σ̃(x, t)ζ(x, t) dx−
∫ t

0

∫

Ω

σ̃(x, τ)ζt(x, τ) dx dτ.

Because of (3.10), (3.30), (3.40), and (H7), we have a uniform upper bound for
‖σ̃(·, t)‖2. Hence, we get from (3.59) by applying Hölder’s inequality, Young’s in-
equality, and (3.52) that

(3.60)
1
4
‖ζ(·, t)‖2

2 +
∫ t

0

‖ζx(·, τ)‖2
2 dτ 6 C40

(∫ t

0

‖ζt(·, τ)‖2
2 dτ

)1/2

.

Formally, we test (3.56) with ζt, use (3.57), integrate over time, and apply Young’s
inequality to deduce that

(3.61)
∫ t

0

‖ζt(·, τ)‖2
2 dτ + ‖ζx(·, t)‖2

2 6 1
2

∫ t

0

‖ζt(·, τ)‖2
2 dτ +

1
2

∫ t

0

‖σ̃t(·, τ)‖2
2 dτ.

For a rigorous derivation of this inequality, one has to consider (3.56) with σ̃t replaced
by some smooth approximation, perform this computation for the corresponding
solutions, and consider afterwards the limit.

Inserting (3.60) into the left-hand side of (3.61) and using (3.10), (1.2), (3.36),
Hölder’s inequality, Young’s inequality, (3.29), (3.51), (H6), and (H7), we observe
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that

1
2 · 42C2

40

‖ζ(·, t)‖4
2 + ‖ζx(·, t)‖2

2(3.62)

6 1
2

∫ t

0

‖(H1[ux, w] + θH2[ux, w] + F )t(·, τ)‖2
2 dτ

6 C41 + C42 max
06τ6t

‖θ(·, τ)‖2
∞ + C43

∫ t

0

‖θt(·, τ)‖2
2 dτ.

Thanks to the Gagliardo-Nirenberg inequality (see below) and Young’s inequality,
we conclude that

‖ζ(·, t)‖2
∞ 6 (C44‖ζx(·, t)‖1/2

2 ‖ζ(·, t)‖1/2
2 + C45‖ζ(·, t)‖2)2

6 C46(1 + ‖ζx(·, t)‖3/2
2 + ‖ζ(·, t)‖3

2).

Now, we apply (3.62) and Young’s inequality to prove that (3.58) holds. �

The following version of the Gagliardo-Nirenberg inequality is a special case, more
general formulations can be found, e.g., in [3], [39].

Lemma 3.12 (Gagliardo-Nirenberg inequality). For all p > 1 there are positive
constants C47, C48 such that

(3.63) ‖v‖∞ 6 C47‖vx‖2/(p+2)
2 ‖v‖p/(p+2)

p + C48‖v‖p ∀ v ∈ H1(Ω).

Lemma 3.13. There is a positive constant C49 such that

(3.64) ‖uxt(·, t)‖2
∞ 6 C49

(
1 + max

06τ6t
‖θ(·, τ)‖2

∞ +
(∫ t

0

‖θt(·, τ)‖2
2 dτ

)3/4)
.

���������
. Let z1, z2 : Ω∞ → � be the solutions to the parabolic initial-boundary

value problems

zi,t − zi,xx = 0 a.e. in Ω∞ ∀ i ∈ {1, 2},(3.65)

zi(1, t) = zi,x(0, t) = 0 for a.e. t > 0 ∀ i ∈ {1, 2},(3.66)

z1(x, 0) = u1,x(x, 0), z2(x, 0) = σ̃(x, 0) a.e. in Ω.(3.67)

Let z3 : Ω∞ → � be defined by

(3.68) z3(x, t) =
∫ x

1

∫ y

0

z1(ξ, t) dξ dy +
∫ t

0

(z2(x, τ) + ζ(x, τ)) dτ ∀ (x, t) ∈ Ω∞.
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Recalling (3.65), (3.66), (3.67), (3.56), (3.57), and (H1), we observe that

z3,t = z1 + z2 + ζ, z3,xx = z1 + z2 + ζ − σ̃ a.e. in Ω∞,(3.69)

z3(1, t) = 0 = z3,x(0, t) for a.e. t > 0, z3(x, 0) =
∫ x

1

u1(ξ) dξ ∀x ∈ Ω.

Hence, we see that z3 is a solution to the linear parabolic initial-boundary value
problem considered in (3.11)–(3.13). Since p is the unique solution to this problem,
we have p = z3 a.e. on Ω∞. Therefore, recalling uxt = pxx and (3.69), we have

(3.70) uxt = z3,xx = z1 + z2 + ζ − σ̃ a.e. in Ω∞.

Using (3.67), (H1), (3.10), (1.2), (1.6), (H6), and (H7), we get uniform bounds
for z1(·, 0) and z2(·, 0). Applying the maximum principle for linear parabolic equa-
tions, we get uniform bounds for z1 and z2. Because of (3.10), (H7), and (3.30), we
have

σ̃ 6 C50 + C51θ a.e. in Ω∞.

Thus, applying (3.70), (3.58), and Young’s inequality yields that (3.64) holds. �

Lemma 3.14. There is a positive constant C52 such that

(3.71) sup
06τ6t

‖θx(·, τ)‖2 +
∫ t

0

‖θt(·, τ)‖2
2 dτ 6 C52.

���������
. Testing (1.3) by θt, using (1.6), (H2), Young’s inequality, Hölder’s

inequality, and (3.30), we see that

1
2
‖θt(·, t)‖2

2 +
1
2
∂

∂t
‖θx(·, t)‖2

2(3.72)

6 1
2
‖u2

xt(·, t) + σuxt(·, t)− (F1[ux, t])t(·, t) + g(·, t, θ(·, t))‖2
2

6 C53‖uxt(·, t)‖2
2(‖uxt(·, t)‖2

∞ + 1 + ‖θ(·, t)‖2
∞)

+ C54(F1[ux, t])t(·, t)‖2
2 + C55‖g1(·, t)‖2

2

+ C56‖g2(·, t)‖2
2‖θ(·, t)‖2

∞.

Integrating this equation over time, using (1.7), (H1), (H2), Hölder’s inequality,
(3.50), (3.51), and (3.64), we see that

∫ s

0

‖θt(·, t)‖2
2 dt+ ‖θx(·, s)‖2

2(3.73)

6 C57 + C58 max
06t6s

(‖uxt(·, t)‖2
∞ + ‖θ(·, t)‖2

∞)

6 C59 + C60

(∫ s

0

‖θt(·, t)‖2
2 dt

)3
4

+ C61 max
06t6s

‖θ(·, t)‖2
∞.
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Thanks to the Gagliardo Nirenberg inequality and (3.5), we have

‖θ(·, t)‖∞ 6 C62‖θx(·, t)‖2/3
2 ‖θ(·, t)‖1/3

1 + C63‖θ(·, t)‖1 6 C64 + C65‖θx(·, t)‖2/3
2 .

Using this inequality to estimate the right-hand side of (3.73), and applying Young’s
inequality afterwards, we see that (3.71) holds. �

Lemma 3.15. There are positive constants C66, C67 such that

sup
06t

(‖θ(·, t)‖∞ + ‖uxt(·, t)‖∞ + ‖σ(·, t)‖∞ + ‖wt(·, t)‖∞) 6 C66,(3.74)

∫ ∞

0

(‖σt(·, t)‖2
2 + ‖ψt(·, t)‖2

2 + ‖σ̃t(·, t)‖2
2) dt 6 C67,(3.75)

∫ ∞

0

(|D1[ux(x, ·), w(x, ·)](t)| + |D2[ux(x, ·), w(x, ·)](t)|) dt <∞(3.76)

for a.e. x ∈ Ω.

���������
. Using (3.39) and (3.71), we get the estimate for θ in (3.75) and ap-

plying in addition (3.64) and (3.30) leads to the remaining estimates in (3.74). In-
voking (1.2), (1.5), (3.51), (3.74), (3.71), and (3.29), we get the estimates for σt and
ψt. Utilizing also (3.10), (H7), and (3.36), we derive the estimates for σ̃t. Combin-
ing (3.35) and (3.50) and using Fubini’s theorem, we see that (3.76) holds. �

4. Proof of the asymptotic results

As in the preceding section, it will be assumed that (H1)–(H8) are satisfied, and
that a solution (u, θ, w) to (1,1)–(1.7) is given, such that (2.22)–(2.25) holds.
For proving the asymptotic results in Theorem 1 and in Theorem 2 with an argu-

mentation similar to [33, Section 4], the following modification of [34, Lemma 3.1]
will be used. In the original formulation, it was assumed that the inequality in (4.1)
holds for all t in the interval considered, but the proof in [34] can also be used if this
inequality holds only for a.e. t in the interval considered.

Lemma 4.1. Suppose that y and h are nonnegative functions on (0,∞), with y′

locally integrable, such that there are positive constants A1, . . . , A4 satisfying

y′(t) 6 A1y
2(t) +A2 + h(t) for a.e. t ∈ (0,∞),(4.1) ∫ ∞

0

y(t) dt 6 A3,

∫ ∞

0

h(t) dt 6 A4.(4.2)

Then we have lim
t→∞

y(t) = 0.
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Lemma 4.2. We have (2.27) and

lim
t→∞

‖px(·, t)‖2 = lim
t→∞

‖ut(·, t)‖2 = 0,(4.3)

lim
t→∞

‖σ̃(·, t)‖2 = lim
t→∞

‖qt‖2 = 0.(4.4)

���������
. Testing (3.11) with −pxx, applying (3.12) and Young’s inequality, we

see that

1
2
∂

∂t
‖px(·, t)‖2

2 + ‖pxx(·, t)‖2
2 6 1

2
‖pxx(·, t)‖2

2 +
1
2
‖σ̃(·, t)‖2

2 for a.e. t ∈ (0,∞).

Since ut = px a.e. in Ω∞, we see by recalling (3.36) and (3.52) that we can apply
Lemma 4.1 to show that (4.3) holds. We have, by Young’s inequality,

∂

∂t
‖σ̃(·, t)‖2

2 = 2
∫

Ω

σ̃(x, t)σ̃t(x, t) dx 6 ‖σ̃(·, t)‖2
2 + ‖σ̃t(·, t)‖2

2 for a.e. t ∈ (0,∞).

Invoking (3.52), (3.75), and Lemma 4.1, we get the convergence result for σ̃ in (4.4).
Since (3.14), (3.10), and (H7) yield that qt = −σ̃, we also have the result for qt

in (4.4). Combining (4.4), (3.10), (H7), and the definition on F∞ in (2.29), we
get (2.27). �

Lemma 4.3. We have

(4.5) lim
t→∞

‖pt(·, t)‖2 = lim
t→∞

‖pxx(·, t)‖2 = lim
t→∞

‖uxt(·, t)‖2 = lim
t→∞

‖ut(·, t)‖∞ = 0.

���������
. Differentiating (3.11) with respect to t, testing it afterwards by pt, and

applying (3.11) and Young’s inequality, we see that

∂

∂t
‖pt(·, t)‖2

2 + ‖pxt(·, t)‖2
2 6 1

2
‖pt(·, t)‖2

2 +
1
2
‖σ̃t(·, t)‖2

2 for a.e. t ∈ (0,∞).

Using (3.52), (3.75), and Lemma 4.1, we get the convergence result for pt in (4.5).
By (3.11), we can combine this with (4.4) to prove the convergence result for pxx

in (4.5). Recalling also (3.9), we get the convergence result for uxt and using (1.6),
we obtain the result for ut. �
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Lemma 4.4. We have

(4.6) lim
t→∞

‖θx(·, t)‖2 = lim
t→∞

‖θ(·, t)− θ(t)‖∞ = 0.

Moreover, we have some constant θ∗ > 0 such that (2.30) holds.

���������
. Combining (3.72) with (3.74), we get for a.e. t ∈ (0,∞)

1
2
∂

∂t
‖θx(·, t)‖2

2 6 C68(‖uxt(·, t)‖2
2 + ‖(F1[ux, t])t(·, t)‖2

2 + ‖g1(·, t)‖2
2 + ‖g2(·, t)‖2

2).

Because of (3.40), (3.50), (3.51), and (H2), we can now use Lemma 4.1 to get the
convergence result for θx. Recalling (3.39), we obtain the result for θ−θ. Combining
this with (3.38), we get some t0 > 0 such that

θ(x, t) >
1
2
C17 ∀x ∈ Ω, t > t0.

Moreover, (2.23) and (2.25) yield that θ is continuous and positive on Ω × [0, t0],
and therefore also bounded from below by a positive constant C ′ on this set. Setting
θ∗ := min( 1

2C17, C
′), we see that (2.30) holds. �

This completes the proof of Theorem 1.

Now, the additional convergence results in Theorem 2 will be proved.

Lemma 4.5. If G is the identity operator, then we have (2.32) and

(4.7) lim
t→∞

‖wt(·, t)‖2 = lim
t→∞

‖ψ(·, t)‖2 = 0.

���������
. Testing the time derivative of (1.4) by wt and using Young’s inequality,

we see that for a.e. t ∈ (0,∞)

∂

∂t
‖wt(·, t)‖2

2 6
∫

Ω

wt(x, t)ψt(x, t) dx 6 1
2
‖wt(·, t)‖2

2 +
1
2
‖ψt(·, t)‖2

2.

By assumption, we have wt = (G[w])t, and can therefore apply (3.51), (3.75),
Lemma 4.1, and (1.4) to show that (4.7) holds. Using now (H6) iii) and (4.5), we get
also (2.32). �
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Lemma 4.6. Assume that H1 ≡ H3 ≡ F1 ≡ 0, g ≡ 0, and f ≡ 0. Then, we
have

(4.8) θ(·, t) → ‖θ0‖1 +
%

2CV
‖u1‖2

2 as t→∞, in L∞(Ω)

and (2.34). If G is the identity operator then we have (2.35).
���������

. Thanks to the assumptions, (3.4), (3.10), (1.2), (H7), and (H5), we
see that I1 ≡ 0, that I0/CV is equal to the right-hand side of (4.8), and that σ̃ =
θH2[ux, w]. Invoking (3.2), (4.5), (4.6), (4.4), and (H1), we get (4.8) and (2.34). If
G is the identity operator then it follows from (4.7), ψ = θH4[ux, w], and (4.8) that
(2.35) holds. �

Lemma 4.7. If (H9) holds then there is a u∞ ∈ W 1,∞(Ω) such that (2.36)–(2.37)
hold.
���������

. Owing to (3.76) and (H9), we have a function ε∞ : Ω → � such that

(4.9) ux(x, t) → ε∞(x) as t→∞, for a.e. x ∈ Ω.

Invoking (3.17), compactness, and properties of weak-star and weak convergence, we
see that ux(·, t) → ε∞ as t→∞ weakly-star in L∞Ω . Defining now u∞(x) :=

∫ x

0
ε∞(ξ)

and using (1.6), we conclude that u∞ ∈ W 1,∞(Ω) and (2.36)–(2.37) hold. �

Lemma 4.8. If (H10) holds then there is a w∞ ∈ L∞(Ω) such that (2.38) holds.
���������

. Thanks to (3.76), (H10), (3.17), compactness, and properties of weak
convergence, we get a w∞ ∈ L∞(Ω) such that (2.38) holds. �

Hence, Theorem 2 is proved.
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