Previous |  Up |  Next

Article

Keywords:
structural optimization; material optimization; topology optimization; finite elements
Summary:
Free material optimization solves an important problem of structural engineering, i.e. to find the stiffest structure for given loads and boundary conditions. Its mathematical formulation leads to a saddle-point problem. It can be solved numerically by the finite element method. The convergence of the finite element method can be proved if the spaces involved satisfy suitable approximation assumptions. An example of a finite-element discretization is included.
References:
[1] G.  Allaire, S.  Aubry, and F.  Jouve: Eigenfrequency optimization in optimal design. Comput. Methods Appl. Mech. Engrg. 190 (2001), 3565–3579. DOI 10.1016/S0045-7825(00)00284-X | MR 1819157
[2] A.  Ben-Tal, M.  Kočvara, A.  Nemirovski, and J.  Zowe: Free material optimization via semidefinite programming: the multi-load case with contact conditions. SIAM J.  Optim. 9 (1999), 813–832. DOI 10.1137/S1052623497327994 | MR 1724765
[3] M. P.  Bendsøe: Optimization of Structural Topology, Shape and Material. Springer-Verlag, Heidelberg-Berlin, 1995. MR 1350791
[4] M. P. Bendsøe, A. Díaz: Optimization of material properties for Mindlin plate design. Structural Optimization 6 (1993), 268–270. DOI 10.1007/BF01743387
[5] M. P. Bendsøe, A.  Díaz, R.  Lipton, and J. E.  Taylor: Optimal design of material properties and material distribution for multiple loading conditions. Internat. J.  Numer. Methods Engrg. 38 (1995), 1149–1170. DOI 10.1002/nme.1620380705 | MR 1325337
[6] M. P. Bendsøe, J. M.  Guades, R. B.  Haber, P.  Pedersen and J. E.  Taylor: An analytical model to predict optimal material properties in the context of optimal structural design. J.  Appl. Mech. 61 (1994), 930–937. DOI 10.1115/1.2901581 | MR 1327483
[7] M. P. Bendsøe, J. M.  Guades, S.  Plaxton, and J. E.  Taylor: Optimization of structures and material properties for solids composed of softening material. Int. J.  Solids Struct. 33 (1995), 1179–1813.
[8] M. Brdička: Mechanics of Continuum. NČSAV, Praha, 1959. (Czech)
[9] J.  Cea: Lectures on Optimization. Springer-Verlag, Berlin-Heidelberg-New York, 1978. Zbl 0409.90050
[10] P. G.  Ciarlet: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam-New York-Oxford, 1978. MR 0520174 | Zbl 0383.65058
[11] I.  Ekeland, R.  Temam: Convex Analysis and Variational Problems. North-Holland, Amsterdam-Oxford, 1976. MR 0463994
[12] L. C.  Evans, R. F.  Garpiery: Measure Theory and Fine Properties of Functions. CRC  Press, London, 1992. MR 1158660
[13] J.  Haslinger: Finite element analysis for unilateral problems with obstacles on the boundary. Apl. Mat. 22 (1977), 180–188. MR 0440956 | Zbl 0434.65083
[14] J.  Haslinger, P.  Neittaanmäki: Finite Element Approximation for Optimal Shape, Material, and Topology Design. John Wiley & Sons, Chichester, 1996. MR 1419500
[15] M.  Kočvara, J.  Zowe: Free Material Optimization. Doc. Math. J.  DMV, Extra Volume ICM III (1998), 707–716. MR 1648200
[16] J.  Nečas: Les méthodes directes en théorie des équations elliptiques. Academia, Praha, 1967. MR 0227584
[17] J.  Nečas, I.  Hlaváček: Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction. Elsevier, Amsterdam-Oxford-New York, 1981. MR 0600655
[18] J.  Petersson, J.  Haslinger: An approximation theory for optimum sheet in unilateral contact. Quart. Appl. Math. 56 (1998), 309–325. DOI 10.1090/qam/1622499 | MR 1622499
[19] U.  Ringertz: On finding the optimal distribution of material properties. Structural Optimization 5 (1993), 265–267. DOI 10.1007/BF01743590
[20] J.  Zowe, M. Kočvara, and M. P. Bendsøe: Free material optimization via mathematical programming. Math. Program. Series  B 79 (1997), 445–466. DOI 10.1007/BF02614328 | MR 1464778
Partner of
EuDML logo