[2] J. Byström, J. Engström, and P. Wall:
Reiterated homogenization of degenerated nonlinear elliptic equations. Chinese Ann. Math. Ser. B 23 (2002), 325–334.
DOI 10.1142/S0252959902000304 |
MR 1930186
[3] J. Byström, J. Helsing, and A. Meidell:
Some computational aspects of iterated structures. Compos-B: Engineering 32 (2001), 485–490.
DOI 10.1016/S1359-8368(01)00033-6
[6] R. De Arcangelis, F. Serra Cassano:
On the homogenization of degenerate elliptic equations in divergence form. J. Math. Pures Appl. 71 (1992), 119–138.
MR 1170248
[8] J.-L. Lions, D. Lukkassen, L.-E. Persson, and P. Wall:
Reiterated homogenization of nonlinear monotone operators. Chinese Ann. Math. Ser. B 22 (2001), 1–12.
DOI 10.1142/S0252959901000024 |
MR 1823125
[9] D. Lukkassen:
On some sharp bounds for the off-diagonal elements of the homogenized tensor. Appl. Math. 40 (1995), 401–406.
MR 1342369 |
Zbl 0847.35011
[11] D. Lukkassen: Formulae and bounds connected to optimal design and homogenization of partial differential operators and integral functionals. Ph.D. thesis, Dept. of Math., Tromsö University, Norway, 1996.
[12] D. Lukkassen:
Bounds and homogenization of integral functionals. Acta Sci. Math. 64 (1998), 121–141.
MR 1631973 |
Zbl 0928.35014
[13] P. Marcellini:
Periodic solutions and homogenization of nonlinear variational problems. Ann. Mat. Pura Appl. 117 (1978), 139–152.
DOI 10.1007/BF02417888 |
MR 0515958
[14] P. Wall: Homogenization of some partial differential operators and integral functionals. Ph.D. thesis, Dept. of Math., Luleå University of Technology, Sweden, 1998.
[16] P. Wall:
Optimal bounds on the effective shear moduli for some nonlinear and reiterated problems. Acta Sci. Math. 65 (2000), 553–566.
MR 1737271