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Abstract. In this paper we derive upper and lower bounds on the homogenized energy 
density functional corresponding to degenerated p-Poisson equations. Moreover, we give 
some non-trivial examples where the bounds are tight and thus can be used as good ap­
proximations of the homogenized properties. We even present some cases where the bounds 
coincide and also compare them with some numerical results. 
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1. INTRODUCTION 

In many types of materials, e.g. composites, the physical properties can be mod­
elled by a F-periodic function A. For small values of € the function \(x/e) will 
oscillate rapidly which means that the material is strongly heterogeneous on a local 
scale. Nevertheless, the material will globally act as a homogeneous medium. It 
is extremely difficult to find the effective properties Ahom which describe this ho­
mogeneous medium. The field of mathematics that rigorously defines the notion of 
effective properties is known as homogenization. 

Consider a class of physical problems described by a minimum energy principle of 
the form 

(1) E£ = mml f -\(-}\Du\pdx- f fudxV 

where u belongs to some subset of W 1 , 1 ^ ) and represents the state of the material. 
It is known that the energy E£ -> -Ehom as e -r 0, where -Ehom is of the type 

-9hom = minj / \honx(Du)dx- J fudx>, 
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and Ahom is defined as 

(2) AhomGO = m i n f -\(y)\^ -f Dv\p dy . 
v
 JY P 

For a proof of these homogenization results when A is bounded between two positive 
constants see e.g. [13]. The degenerated case, i.e. when A is allowed to approach zero 
or infinity, was studied in [6] (see also [2]). By using numerical methods it is possible 
to compute Ahom by formula (2), see e.g. [3]. Another approach is to find bounds 

On Ahom-

Bounds for the case when A is bounded between two positive constants were pre­
sented in [10] (see also [9]). These bounds, combined with reiterated homogenization 
(i.e. introducing A of the form \(x/e,... ,x/em)), have played a central role in the 
development of new optimal structures, see e.g. [1], [7], [8], [11], [12], [14] and [16]. 
Moreover, these bounds were used in an extension of the Ponte Castaneda varia­
tional principle ([4] and [5]) to obtain bounds for a class of more general nonlinear 
problems than those described above, see [15]. 

The main results of this paper are that we prove lower and upper bounds on Ahom 
for the degenerated case (see Theorem 1 and Theorem 2), i.e. we find functions AiOWer 
and AUpper such that 

Alower(s) ^ Ahom(s) ^ Aupper(s)« 

Moreover, we present some illustrative examples where the bounds are tight and thus 

can be used as a good approximation of Ahom-

2 . NOTATION AND PRELIMINARY RESULTS 

Let ft be an open bounded subset of Rn, Y the unit cube in lRn and (•,•) the 
Euclidean inner product. Let 1 < p < oo, 1/p + 1/q = 1, and let A be a y-periodic 
(weight) function such that 

A > 0 a.e., and A, A_ 1 / ( 1-p ) are in Lloc(R
n). 

The set of all real-valued functions u in L1
oc(n) such that u\l/p is in LP(S1) is 

denoted by LP(H, A). The set of functions u in W^oc(ft) such that u and \Du\ are in 
LP(Q, \) is denoted by WliP(ftj A). Moreover, by W0

1,p(ft, A) we mean the closure of 
C£(fi) in Wl>p(n,\) and W^P(Y,\) is the set of real functions u in W^,

c
1(Rn) such 

that u is y-periodic and u G Wl*p(Y, A). 
Define the family (ue) as the set of solutions of the variational problems 

Eє = min 
uЄWtí^П.ЛÍx/ff)) 

Цlл(ï)WЉ-/n/udx}. 
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Ehom = min 
uew^p(Q) i 

Under the additional assumption that A belongs to the Muckenhoupt class Ap it was 
proved in [6] that (u£) converges weakly in W0

1'1(.(7) to the unique solution iihom of 
the homogenized problem 

{ / \hom(Du)dx- / fudx) 
) Un JQ J 

where Ahom is defined as 

(3) AhomOO = min / -A(y)|£ + Dv\pdy. 
v€W*g(Y,\)JYP 

It was also proved that 

EE —> F^hom-

We remark that the family of solutions (ue) of the minimization problems described 
above are also solutions to the weighted weak formulations of the p-Poisson equations, 
namely 

I / (\(^\Due\
p-2Du£,D<p)dx = j fipdx, 

[u£ew^p(n,\(x/e)) 

for every <D in W Q ' ^ Q , \(x/e)). The homogenized solution Whom satisfies the homog­
enized problem 

/ (b(Duhom),D<p)dx= / f^dx, 
Jn JQ 

.uhomewZ>p(n), 

for every <p in WQ'P(Q,), where b is given by 

KO = J A(y)|£ + Dwt\*-2(£ + Dwz)dy 

and W£ is the solution of the local problem 

f / <A(»)|£ + Dwtf-2{Z + Dw€),D<p) Ay = 0, 
(4) I JY 

UceW^y.A) , 
for every <p in W*£(Y, A). 

R e m a r k 1. The solution w$ of the local problem (4) is also the minimizer in 
the local minimization problem (3) and 

Ahomíí) = ( ^ ( f U ) . 



3 . BOUNDS 

In this section we present upper and lower bounds on the homogenized energy 
density functional Ahom defined in (3). The bounds are given in the following two 
theorems: 

Theorem 1. Let Ahom be defined as in (3). Then we have the upper bound 

Xhom(kei) ^ \upper(kei) =* \k\»- (J (A)1/(1"p) dyi\ \ 

where { e i , . . . , en} is the canonical basis in Rn and 

(X)i = ... Xdyi... dyi-x dy{+i ... dyn. 
Jo Jo 

Theorem 2. Let Ahom be defined as in (3). Then we have the lower bound 

X\iom\^i) ^ X\0yrer\fcei) 

=f \W- f ... I (A1^1-') ) j - ' dVl... difc.! dyw ... dyn, 
P Jo Jo 

where {e\,..., en} is the canonical basis in Un and 

(\W~%= fxM-ridVi. 
JO 

R e m a r k 2. By linearity, we get lower and upper bounds on Ahom for all £ £ IRn 

when p = 2. 

For the proofs of Theorem 1 and Theorem 2 we need the following two lemmata, 
which themselves are of independent interest: 

Lemma 3 . Let D be a measurable set in Rd such that \D\ = 1. Moreover, 

let a ^ 0 be a weight function such that a £ LX(D) and a}^l~r) e LX(D), where 

1 < r < oo. Then 

min / a(x)\\ + u(x)\r dx = ( f a(x)1^1~r) dx] , 
utu JD \JD ) 

where 

(5) U= lueLr(D,a): f udx = o\. 
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Moreover, the minimum is attained for 

u=(fa1^1-^dx\1a1^1-^-l. 

P r o o f . The reversed Holder inequality and (5) imply that 

f a(x)\l + u(x)\r dx> ( f a(x)1^1~r) dx\ \f 1 + u(x) dx 

= ( f a(x)1^1-rUxSj \ 

Equality holds in Holder's inequality when 

ca 1 / ( 1 " r ) = |l + ti| = l + ti. 

The zero average constraint implies that 

Since a G Ll(D) and a1!*1-^ G L1^)* it; follows that 0 < c < oo. Moreover, 
u £ Lr(D,a) since 

/ \u\radx= f \ca1^1-r^ -l\radx 
JD J D 

^c(f a1/*1-') dx + / adx\ < oo, 

where C is a constant. • 

Lemma 4. Let Ahom be defined as in (3). Then 

Kom(0= mf / ^ - ' I f + ̂ dy , 
J y <7dj/=0 

where A£om is the Legendre transform of Ahom and V is defined as 

V = iaeLq(Y,X1~q): f (a,Dv)dy = 0 for all veW$£(Y,\)\. 

115 



Proof . Let / : Rn -> R be defined as 

P 

where 5 is a fixed vector in Rn. The Legendre transform /* of / is 

/ » 1? sup {((7,0 - / ( 0 ) = -A^IO f - (o,s). 
CGR- Q 

This implies Young's inequality 

(6) <<r,0 < / ( « + /*W for all (T,(G Rn, 

with equality for 

(7) a = AK + *r3(£ + *). 

Inequality (6) implies that for any measurable function a we have 

AhomOO = min / -A(</)|f + I>t;|*dy 
vGWp^(y,A)Jy P 

^ min / ((7,0 - - A ^ l o f + (o,Dv)dy. 
vew^p

T(Y,\)JY Q 

This implies 

(8) Ah o m(0 > sup / ((7,0 - - A ^ M ' d y . 
aev JY Q 

Actually we have equality in (8). This fact will be clear if we prove that 

(9) Ahom(0 ^ sup / ( a , 0 ~ - A ^ V I ' d y . 
aev JY Q 

Let w% be the minimizer in (3) and let or be defined as 

(10) (7i = A|f + FH|P"2(f + Dw(). 

Then it follows by (6) and (7) that 

Ahom(0 = / (cJui) - - X 1 - ^ + (ouDwz)dy. 
JY Q 

116 



Next we note that Or e V and thus (9) holds. Indeed, by (10) and Remark 1 we 
have 

/ (v1,D<p)dy = j (\\Z + Dwz\p-2(Z + Dw<:),D<p)dy = 0 

for every ip G W£g(Y, A) and (10) implies that 

/ \a1\
q\1-qdy= f |£ + I}^|pAdy<oo. 

We now proceed as follows: 

(11) AhomCO = sup f ( a , 0 - - A ^ l o f dy 

= s u P f ( i ? , o - igf f -*-q\°\q<iy • v L f "^y JY q 
JYady=r) 

Let F: Un -> R be defined as 

(12) Ffa) = inf / - A ^ l o f dy = inf / -A1"*!?/ + <r|9 dy. 
aev JY q _ *ey J y ^ 

JYady=r) Jy a dy=0 

In view of (11) and (12) it follows that 

Ahomtf) = sup[<»7,0 - F(7/)] = F * ( 0 . 

Since F is convex and lower semicontinuous we have 

Ahom(i) = F " ( 0 = F ( 0 

and the proof is complete. D 

Proof of Theorem 1. Without loss of generality we prove the result for k = 1. 
Let Mi = {ve W£*(Y, A): v = v(y{)}. Lemma 3 then gives 

Ahom(ei) = min / -\(y)\e{ + Dv(y)\pdy 
vew*£(Y,\) JY P 

^ min f iA(y)|l + A<I(y;)|pdy 
v€Mi JY p 

f 1 1 = ^ / "W-l' + A^yOI'dw veMiJ0 p 

-l(I>'"'-"^j 
\l~P 

D 
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P r o o f of Theorem 2. Without loss of generality we prove the result for k = 1. 
Let 

Si = la E V: a = (0 , . . . , c r i (y i , . . . , y z _i ,y f + i , . . . , y n ) , . . . , 0 ) and / <rdy = o l . 

By using Lemma 4 and Lemma 3 we obtain 

Kom(ei)= inf fh^a + ^dy 
aev JY q 

JY a dy=0 

< inf / -A 1 ~ 9 | l - r - (7 i (y i , . . . ,y i _i ,y i + i , . . . ,y n ) | 9 dy 
res* JY q 

= inf / .../ - (A 1 -^ | l+ r / i rdy i . . .dy ,_ idy , + i . . .dy n 
"£Si Jo Jo Q 

= -\f ... f (A1-*)!"* dyi... dyf_i dyr+i... dyn] \ 
Q LJo Jo 

This implies the following lower bound on Ahom(ei)-

Ahom(ei) = sup {(ei ,0 - A£om(f)} 
£€Rn 

^ sup {£ - A£om(te;)} 
tetGRn 

= supO-|^A):om(e i)} 
£GR 

^ supj* - Y [/ *' * / <Al_9)'"P d^ •'' d "̂1 d^+! •' * d^l } 

= - f ... f ( A 1 / ( 1 - P > ) ! " P d y i . . . dy,_i d y , + i . . . dyn . 
PJo Jo 

4 . SOME EXAMPLES 

In this section we apply the bounds from Theorem 1 and Theorem 2 in two il­
lustrative examples. The examples are presented in IR2 for simplicity. Let us first 
remark that when the upper and lower bounds are equal we know the effective energy 
density functional exactly. For instance, this is the case when A is of the type 

A(y) = /(2/1M2/2), A(y) is F-periodic 
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Then it follows from Theorem 1 and Theorem 2 that 

v1-P rl 

Ahom(ei) = l- (J' /(yi)1/(1"p) dVl)
 P J g(y2) dy2, 

Ahom(e2) =
 l- ( j f g(y2)

1/(1-p) dy2) " J^ f(Vl) dyi. 

We now give one example of this situation where the conductivity degenerates on 
the unit cell boundary. We note that it is easy to make the mistake of believing 
that we have zero conductivity in one direction and infinitely high conductivity in 
the other direction. However, as we show below, the homogenized energy density 
functional is nonzero and finite in both directions. 

E x a m p l e 5. Consider the special case when p = 2 and let A: IR2 -> IR be 
Y-periodic and defined as 

i 
î / i - 2 

1/2 
on Y. A(y) = M i - y i ) r 1 / 2 

Then, by Theorem 1 and Theorem 2, we have 

If1 7t 
Ahom(e2) = - / X(yi) d*/i = 2 g / _ i x » 

where K(-) is the complete elliptic integral of the first kind. This means that 

Ahom(ei) » 0.40451, Ahom(e2) « 0.84721, 

that is, the effective conductivity in the y2-direction is only about twice as high as 
the effective conductivity in the y\-direction. 

We now consider an example where the upper and lower bounds are very tight. 
This means that we have a good explicit estimate of the effective energy density 
functional. This fact can be used to obtain error estimates for numerical computa­
tions. We demonstrate this by comparing the bounds with numerical computations 
done in MATLAB using the FEMLAB toolbox. 

E x a m p l e 6. Let 

^ = {lf€y: | v - ( | , i ) |<r f 0<r< i} 
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and let A: be y-periodic and defined as 

m Л ( ; M й ) l ) в ' y£D-
1, yЄY\Dr, 

where — 2 < a <2p — 2. By symmetry, the homogenized energy density functional 

Ahom(ei) = Ahom(e2)- Let r = 0.4 and let A - , A+ denote the lower and upper bounds, 

respectively. 

alpha «-1/2 alpha = 1/2 

0 0 0 0 

Figure 1. This picture shows 9 unit cells for each of the values a 
and a = 3/2. The radius is r = 0.4. 

-1/2, Q = 1/2, a = 1 

(a) The linear case, p = 2: 

We present the results rounded to five digits. 

a Ahom \ei) A" A+ 

-3/2 0.70147 0.67425 0.74023 

-1 0.63470 0.62059 0.65433 

-1/2 0.56597 0.56203 0.57082 

1/2 0.44172 0.43797 0.44482 

1 0.39389 0.38207 0.40284 

3/2 0.35639 0.33773 0.37078 
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(b) The nonlinear case, p = 3: 

We present the results rounded to four digits. 

1 a Лhom\Єi) A- A+ 

-1 0.4325 0.4260 0.4482 

1 0.2649 0.2608 0.2708 

2 0.2219 0.2121 0.2353 

3 0.1952 0.1821 0.2132 

As we see from these tables, the lower and upper bounds are very tight, which means 

that they can be used as a good approximation of the homogenized energy density 

functional. 

Acknowledgement. We thank the referee and Professor Lars-Erik Persson for 

valuable comments which have improved the final version of this paper. 
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1. Introduction

In many types of materials, e.g. composites, the physical properties can be mod-
elled by a Y -periodic function λ. For small values of ε the function λ(x/ε) will
oscillate rapidly which means that the material is strongly heterogeneous on a local
scale. Nevertheless, the material will globally act as a homogeneous medium. It

is extremely difficult to find the effective properties λhom which describe this ho-
mogeneous medium. The field of mathematics that rigorously defines the notion of

effective properties is known as homogenization.
Consider a class of physical problems described by a minimum energy principle of

the form

(1) Eε = min
u

{∫

Ω

1
p
λ
(x

ε

)
|Du|p dx−

∫

Ω

fu dx

}
,

where u belongs to some subset of W 1,1(Ω) and represents the state of the material.
It is known that the energy Eε → Ehom as ε → 0, where Ehom is of the type

Ehom = min
u

{∫

Ω

λhom(Du) dx−
∫

Ω

fu dx

}
,
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and λhom is defined as

(2) λhom(ξ) = min
v

∫

Y

1
p
λ(y)|ξ + Dv|p dy.

For a proof of these homogenization results when λ is bounded between two positive

constants see e.g. [13]. The degenerated case, i.e. when λ is allowed to approach zero
or infinity, was studied in [6] (see also [2]). By using numerical methods it is possible

to compute λhom by formula (2), see e.g. [3]. Another approach is to find bounds
on λhom.

Bounds for the case when λ is bounded between two positive constants were pre-
sented in [10] (see also [9]). These bounds, combined with reiterated homogenization

(i.e. introducing λ of the form λ(x/ε, . . . , x/εm)), have played a central role in the
development of new optimal structures, see e.g. [1], [7], [8], [11], [12], [14] and [16].

Moreover, these bounds were used in an extension of the Ponte Castaneda varia-
tional principle ([4] and [5]) to obtain bounds for a class of more general nonlinear

problems than those described above, see [15].
The main results of this paper are that we prove lower and upper bounds on λhom

for the degenerated case (see Theorem 1 and Theorem 2), i.e. we find functions λlower

and λupper such that
λlower(ξ) 6 λhom(ξ) 6 λupper(ξ).

Moreover, we present some illustrative examples where the bounds are tight and thus
can be used as a good approximation of λhom.

2. Notation and preliminary results

Let Ω be an open bounded subset of � n , Y the unit cube in � n and 〈·, ·〉 the
Euclidean inner product. Let 1 < p < ∞, 1/p + 1/q = 1, and let λ be a Y -periodic
(weight) function such that

λ > 0 a.e., and λ, λ−1/(1−p) are in L1
loc( � n ).

The set of all real-valued functions u in L1
loc(Ω) such that uλ1/p is in Lp(Ω) is

denoted by Lp(Ω, λ). The set of functions u in W 1,1
loc (Ω) such that u and |Du| are in

Lp(Ω, λ) is denoted by W 1,p(Ω, λ). Moreover, by W 1,p
0 (Ω, λ) we mean the closure of

C1
0 (Ω) in W 1,p(Ω, λ) and W 1,p

per(Y, λ) is the set of real functions u in W 1,1
loc ( � n ) such

that u is Y -periodic and u ∈ W 1,p(Y, λ).
Define the family (uε) as the set of solutions of the variational problems

Eε = min
u∈W 1,p

0 (Ω,λ(x/ε))

{∫

Ω

1
p
λ
(x

ε

)
|Du|p dx−

∫

Ω

fu dx

}
.
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Under the additional assumption that λ belongs to the Muckenhoupt class Ap it was

proved in [6] that (uε) converges weakly in W 1,1
0 (Ω) to the unique solution uhom of

the homogenized problem

Ehom = min
u∈W 1,p

0 (Ω)

{∫

Ω

λhom(Du) dx−
∫

Ω

fu dx

}

where λhom is defined as

(3) λhom(ξ) = min
v∈W 1,p

per (Y,λ)

∫

Y

1
p
λ(y)|ξ + Dv|p dy.

It was also proved that
Eε → Ehom.

We remark that the family of solutions (uε) of the minimization problems described
above are also solutions to the weighted weak formulations of the p-Poisson equations,
namely 




∫

Ω

〈
λ
(x

ε

)
|Duε|p−2Duε, Dϕ

〉
dx =

∫

Ω

fϕ dx,

uε ∈ W 1,p
0 (Ω, λ(x/ε))

for every ϕ in W 1,p
0 (Ω, λ(x/ε)). The homogenized solution uhom satisfies the homog-

enized problem 



∫

Ω

〈b(Duhom), Dϕ〉 dx =
∫

Ω

fϕ dx,

uhom ∈ W 1,p
0 (Ω),

for every ϕ in W 1,p
0 (Ω), where b is given by

b(ξ) =
∫

Y

λ(y)|ξ + Dwξ |p−2(ξ + Dwξ) dy

and wξ is the solution of the local problem

(4)





∫

Y

〈λ(y)|ξ + Dwξ |p−2(ξ + Dwξ), Dϕ〉 dy = 0,

wξ ∈ W 1,p
per(Y, λ),

for every ϕ in W 1,p
per(Y, λ).

����� �"!�#
1. The solution wξ of the local problem (4) is also the minimizer in

the local minimization problem (3) and

λhom(ξ) =
〈1

p
b(ξ), ξ

〉
.
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3. Bounds

In this section we present upper and lower bounds on the homogenized energy

density functional λhom defined in (3). The bounds are given in the following two
theorems:

Theorem 1. Let λhom be defined as in (3). Then we have the upper bound

λhom(kei) 6 λupper(kei)
def= |k|p 1

p

(∫ 1

0

〈λ〉1/(1−p)
i dyi

)1−p

,

where {e1, . . . , en} is the canonical basis in � n and

〈λ〉i =
∫ 1

0

. . .

∫ 1

0

λ dy1 . . . dyi−1 dyi+1 . . . dyn.

Theorem 2. Let λhom be defined as in (3). Then we have the lower bound

λhom(kei) > λlower(kei)

def= |k|p 1
p

∫ 1

0

. . .

∫ 1

0

〈λ1/(1−p)〉1−p
i dy1 . . . dyi−1 dyi+1 . . . dyn,

where {e1, . . . , en} is the canonical basis in � n and

〈λ1/(1−p)〉i =
∫ 1

0

λ1/(1−p) dyi.

����� �"!�#
2. By linearity, we get lower and upper bounds on λhom for all ξ ∈ � n

when p = 2.

For the proofs of Theorem 1 and Theorem 2 we need the following two lemmata,
which themselves are of independent interest:

Lemma 3. Let D be a measurable set in � d such that |D| = 1. Moreover,
let a > 0 be a weight function such that a ∈ L1(D) and a1/(1−r) ∈ L1(D), where
1 < r < ∞. Then

min
u∈U

∫

D

a(x)|1 + u(x)|r dx =
(∫

D

a(x)1/(1−r) dx

)1−r

,

where

(5) U =
{

u ∈ Lr(D, a) :
∫

D

u dx = 0
}

.
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Moreover, the minimum is attained for

ũ =
(∫

D

a1/(1−r) dx

)−1

a1/(1−r) − 1.

$%!�&'&)(
. The reversed Hölder inequality and (5) imply that

∫

D

a(x)|1 + u(x)|r dx >
(∫

D

a(x)1/(1−r) dx

)1−r∣∣∣∣
∫

D

1 + u(x) dx

∣∣∣∣
r

=
(∫

D

a(x)1/(1−r) dx

)1−r

.

Equality holds in Hölder’s inequality when

ca1/(1−r) = |1 + u| = 1 + u.

The zero average constraint implies that

c =
(∫

D

a1/(1−r) dx

)−1

.

Since a ∈ L1(D) and a1/(1−r) ∈ L1(D), it follows that 0 < c < ∞. Moreover,
ũ ∈ Lr(D, a) since

∫

D

|ũ|ra dx =
∫

D

|ca1/(1−r) − 1|ra dx

6 C

(∫

D

a1/(1−r) dx +
∫

D

a dx

)
< ∞,

where C is a constant. �

Lemma 4. Let λhom be defined as in (3). Then

λ∗hom(ξ) = inf
σ∈V*

Y
σ dy=0

∫

Y

1
q
λ1−q |ξ + σ|q dy,

where λ∗hom is the Legendre transform of λhom and V is defined as

V =
{

σ ∈ Lq(Y, λ1−q) :
∫

Y

〈σ, Dv〉 dy = 0 for all v ∈ W 1,p
per(Y, λ)

}
.
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$%!�&'&)(
. Let f : � n → � be defined as

f(ξ) =
1
p
λ|ξ + s|p,

where s is a fixed vector in � n . The Legendre transform f∗ of f is

f∗(σ) def= sup
ξ∈ + n

{〈σ, ξ〉 − f(ξ)} =
1
q
λ1−q |σ|q − 〈σ, s〉.

This implies Young’s inequality

(6) 〈σ, ξ〉 6 f(ξ) + f∗(σ) for all σ, ξ ∈ � n ,

with equality for

(7) σ = λ|ξ + s|p−2(ξ + s).

Inequality (6) implies that for any measurable function σ we have

λhom(ξ) = min
v∈W 1,p

per (Y,λ)

∫

Y

1
p
λ(y)|ξ + Dv|p dy

> min
v∈W 1,p

per (Y,λ)

∫

Y

〈σ, ξ〉 − 1
q
λ1−q |σ|q + 〈σ, Dv〉 dy.

This implies

(8) λhom(ξ) > sup
σ∈V

∫

Y

〈σ, ξ〉 − 1
q
λ1−q |σ|q dy.

Actually we have equality in (8). This fact will be clear if we prove that

(9) λhom(ξ) 6 sup
σ∈V

∫

Y

〈σ, ξ〉 − 1
q
λ1−q |σ|q dy.

Let wξ be the minimizer in (3) and let σ1 be defined as

(10) σ1 = λ|ξ + Dwξ|p−2(ξ + Dwξ).

Then it follows by (6) and (7) that

λhom(ξ) =
∫

Y

〈σ1, ξ〉 −
1
q
λ1−q |σ1|q + 〈σ1, Dwξ〉 dy.
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Next we note that σ1 ∈ V and thus (9) holds. Indeed, by (10) and Remark 1 we

have ∫

Y

〈σ1, Dϕ〉 dy =
∫

Y

〈λ|ξ + Dwξ |p−2(ξ + Dwξ), Dϕ〉 dy = 0

for every ϕ ∈ W 1,p
per(Y, λ) and (10) implies that

∫

Y

|σ1|qλ1−q dy =
∫

Y

|ξ + Dwξ |pλ dy < ∞.

We now proceed as follows:

λhom(ξ) = sup
σ∈V

∫

Y

〈σ, ξ〉 − 1
q
λ1−q |σ|q dy(11)

= sup
η

[
〈η, ξ〉 − inf

σ∈V*
Y

σ dy=η

∫

Y

1
q
λ1−q |σ|q dy

]
.

Let F : � n → � be defined as

(12) F (η) = inf
σ∈V*

Y
σ dy=η

∫

Y

1
q
λ1−q |σ|q dy = inf

σ∈V*
Y

σ dy=0

∫

Y

1
q
λ1−q |η + σ|q dy.

In view of (11) and (12) it follows that

λhom(ξ) = sup
η

[〈η, ξ〉 − F (η)] = F ∗(ξ).

Since F is convex and lower semicontinuous we have

λ∗hom(ξ) = F ∗∗(ξ) = F (ξ)

and the proof is complete. �
$%!�&'&)(

of Theorem 1. Without loss of generality we prove the result for k = 1.
Let Mi = {v ∈ W 1,p

per(Y, λ) : v = v(yi)}. Lemma 3 then gives

λhom(ei) = min
v∈W 1,p

per (Y,λ)

∫

Y

1
p
λ(y)|ei + Dv(y)|p dy

6 min
v∈Mi

∫

Y

1
p
λ(y)|1 + Div(yi)|p dy

= min
v∈Mi

∫ 1

0

1
p
〈λ〉i|1 + Div(yi)|p dyi

=
1
p

(∫ 1

0

〈λ〉1/(1−p)
i dyi

)1−p

.

�
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$%!�&'&)(
of Theorem 2. Without loss of generality we prove the result for k = 1.

Let

Si =
{

σ ∈ V : σ = (0, . . . , σi(y1, . . . , yi−1, yi+1, . . . , yn), . . . , 0) and
∫

Y

σ dy = 0
}

.

By using Lemma 4 and Lemma 3 we obtain

λ∗hom(ei) = inf
σ∈V*

Y
σ dy=0

∫

Y

1
q
λ1−q |ei + σ|q dy

6 inf
σ∈Si

∫

Y

1
q
λ1−q |1 + σi(y1, . . . , yi−1, yi+1, . . . , yn)|q dy

= inf
σ∈Si

∫ 1

0

. . .

∫ 1

0

1
q
〈λ1−q〉i|1 + σi|q dy1 . . . dyi−1 dyi+1 . . . dyn

=
1
q

[∫ 1

0

. . .

∫ 1

0

〈λ1−q〉1−p
i dy1 . . . dyi−1 dyi+1 . . . dyn

]1−q

.

This implies the following lower bound on λhom(ei):

λhom(ei) = sup
ξ∈ + n

{〈ei, ξ〉 − λ∗hom(ξ)}

> sup
tei∈ + n

{t− λ∗hom(tei)}

= sup
t∈ +

{t− |t|qλ∗hom(ei)}

> sup
t∈ +

{
t− |t|q

q

[∫ 1

0

. . .

∫ 1

0

〈λ1−q〉1−p
i dy1 . . . dyi−1 dyi+1 . . . dyn

]1−q}

=
1
p

∫ 1

0

. . .

∫ 1

0

〈λ1/(1−p)〉1−p
i dy1 . . . dyi−1 dyi+1 . . . dyn.

�

4. Some examples

In this section we apply the bounds from Theorem 1 and Theorem 2 in two il-
lustrative examples. The examples are presented in � 2 for simplicity. Let us first
remark that when the upper and lower bounds are equal we know the effective energy
density functional exactly. For instance, this is the case when λ is of the type

λ(y) = f(y1)g(y2), λ(y) is Y -periodic.
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Then it follows from Theorem 1 and Theorem 2 that

λhom(e1) =
1
p

(∫ 1

0

f(y1)1/(1−p) dy1

)1−p ∫ 1

0

g(y2) dy2,

λhom(e2) =
1
p

(∫ 1

0

g(y2)1/(1−p) dy2

)1−p ∫ 1

0

f(y1) dy1.

We now give one example of this situation where the conductivity degenerates on
the unit cell boundary. We note that it is easy to make the mistake of believing

that we have zero conductivity in one direction and infinitely high conductivity in
the other direction. However, as we show below, the homogenized energy density

functional is nonzero and finite in both directions.
, -.�"�0/213�

5. Consider the special case when p = 2 and let λ : � 2 → � be
Y -periodic and defined as

λ(y) = |y1(1− y1)|−1/2

∣∣∣∣y1 −
1
2

∣∣∣∣
1/2

on Y.

Then, by Theorem 1 and Theorem 2, we have

λhom(e1) =
1
2

(∫ 1

0

λ−1(y1) dy1

)−1

=
1√
2

(
2
√

2
3

K
( 1√

2

))−1

,

λhom(e2) =
1
2

∫ 1

0

λ(y1) dy1 =
π

2K
(

1√
2

) ,

where K(·) is the complete elliptic integral of the first kind. This means that

λhom(e1) ≈ 0.40451, λhom(e2) ≈ 0.84721,

that is, the effective conductivity in the y2-direction is only about twice as high as
the effective conductivity in the y1-direction.

We now consider an example where the upper and lower bounds are very tight.

This means that we have a good explicit estimate of the effective energy density
functional. This fact can be used to obtain error estimates for numerical computa-

tions. We demonstrate this by comparing the bounds with numerical computations
done in MATLAB using the FEMLAB toolbox.
, -.�"�0/213�

6. Let

Dr =
{

y ∈ Y :
∣∣∣y −

(1
2
,
1
2

)∣∣∣ 6 r, 0 6 r 6 1
2

}

119



and let λ : � 2 → � be Y -periodic and defined as

λ(y) =





(1
r

∣∣∣y −
(1

2
,
1
2

)∣∣∣
)α

, y ∈ Dr,

1, y ∈ Y \Dr,

where −2 < α < 2p − 2. By symmetry, the homogenized energy density functional
λhom(e1) = λhom(e2). Let r = 0.4 and let λ−, λ+ denote the lower and upper bounds,
respectively.

Figure 1. This picture shows 9 unit cells for each of the values α = −1/2, α = 1/2, α = 1
and α = 3/2. The radius is r = 0.4.

(a) The linear case, p = 2:
We present the results rounded to five digits.

α λhom(ei) λ− λ+

−3/2 0.70147 0.67425 0.74023
−1 0.63470 0.62059 0.65433
−1/2 0.56597 0.56203 0.57082

1/2 0.44172 0.43797 0.44482
1 0.39389 0.38207 0.40284

3/2 0.35639 0.33773 0.37078
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(b) The nonlinear case, p = 3:
We present the results rounded to four digits.

α λhom(ei) λ− λ+

−1 0.4325 0.4260 0.4482
1 0.2649 0.2608 0.2708
2 0.2219 0.2121 0.2353
3 0.1952 0.1821 0.2132

As we see from these tables, the lower and upper bounds are very tight, which means

that they can be used as a good approximation of the homogenized energy density
functional.

Acknowledgement. We thank the referee and Professor Lars-Erik Persson for
valuable comments which have improved the final version of this paper.

References

[1] A. Braides, D. Lukkassen: Reiterated homogenization of integral functionals. Math.
Models Methods Appl. Sci. 10 (2000), 47–71.

[2] J. Byström, J. Engström, and P. Wall: Reiterated homogenization of degenerated non-
linear elliptic equations. Chinese Ann. Math. Ser. B 23 (2002), 325–334.

[3] J. Byström, J. Helsing, and A. Meidell: Some computational aspects of iterated struc-
tures. Compos-B: Engineering 32 (2001), 485–490.

[4] P. Ponte Castaneda: Bounds and estimates for the properties of nonlinear heterogeneous
systems. Philos. Trans. Roy. Soc. London Ser. A 340 (1992), 531–567.

[5] P. Ponte Castaneda: A new variational principle and its application to nonlinear het-
erogeneous systems. SIAM J. Appl. Math. 52 (1992), 1321–1341.

[6] R. De Arcangelis, F. Serra Cassano: On the homogenization of degenerate elliptic equa-
tions in divergence form. J. Math. Pures Appl. 71 (1992), 119–138.

[7] J.-L. Lions, D. Lukkassen, L.-E. Persson, and P. Wall: Reiterated homogenization of
monotone operators. C. R. Acad. Sci. Paris Ser. I Math. 330 (2000), 675–680.

[8] J.-L. Lions, D. Lukkassen, L.-E. Persson, and P. Wall: Reiterated homogenization of
nonlinear monotone operators. Chinese Ann. Math. Ser. B 22 (2001), 1–12.

[9] D. Lukkassen: On some sharp bounds for the off-diagonal elements of the homogenized
tensor. Appl. Math. 40 (1995), 401–406.

[10] D. Lukkassen, L.-E. Persson, and P. Wall: On some sharp bounds for the homogenized
p-Poisson equation. Appl. Anal. 58 (1995), 123–135.

[11] D. Lukkassen: Formulae and bounds connected to optimal design and homogenization
of partial differential operators and integral functionals. Ph.D. thesis. Dept. of Math.,
Tromsö University, Norway, 1996.

[12] D. Lukkassen: Bounds and homogenization of integral functionals. Acta Sci. Math. 64
(1998), 121–141.

[13] P. Marcellini: Periodic solutions and homogenization of nonlinear variational problems.
Ann. Mat. Pura Appl. 117 (1978), 139–152.

[14] P. Wall: Homogenization of some partial differential operators and integral functionals.
Ph.D. thesis. Dept. of Math., Lule̊a University of Technology, Sweden, 1998.

121



[15] P. Wall: Bounds and estimates on the effective properties for nonlinear composites.
Appl. Math. 45 (2000), 419–437.

[16] P. Wall: Optimal bounds on the effective shear moduli for some nonlinear and reiterated
problems. Acta Sci. Math. 65 (2000), 553–566.

Authors’ address: J. Byström, J. Engström, and P. Wall, Dept. of Mathematics, Lu-
le̊a University of Technology, S-97187 Lule̊a, Sweden, e-mail: johanb@sm.luth.se, jonase
@sm.luth.se, wall@sm.luth.se.

122


		webmaster@dml.cz
	2020-07-02T10:56:13+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




