[1] G. Allasia, C. Giordano, J. Pečarić:
Hadamard-type inequalities for $(2r)$-convex functions with applications. Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 133 (1999), 187–200.
MR 1799453
[2] H. Alzer:
A note on Hadamard’s inequalities. C. R. Math. Rep. Acad. Sci. Canada 11 (1989), 255–258.
MR 1030364 |
Zbl 0707.26012
[4] A. G. Azpeitia:
Convex functions and the Hadamard inequality. Rev. Colombiana Mat. 28 (1994), 7–12.
MR 1304041 |
Zbl 0832.26015
[5] D. Barbu, S. S. Dragomir and C. Buşe:
A probabilistic argument for the convergence of some sequences associated to Hadamard’s inequality. Studia Univ. Babeş-Bolyai Math. 38 (1993), 29–33.
MR 1863680
[6] C. Buşe, S. S. Dragomir and D. Barbu:
The convergence of some sequences connected to Hadamard’s inequality. Demostratio Math. 29 (1996), 53–59.
DOI 10.1515/dema-1996-0109 |
MR 1398727
[7] S. S. Dragomir:
A mapping in connection to Hadamard’s inequalities. Anz. Österreich. Akad. Wiss. Math.-Natur. Kl. 128 (1991), 17–20.
MR 1188722 |
Zbl 0747.26015
[8] S. S. Dragomir:
A refinement of Hadamard’s inequality for isotonic linear functionals. Tamkang J. Math. 24 (1993), 101–106.
MR 1215250 |
Zbl 0799.26016
[9] S. S. Dragomir:
On Hadamard’s inequalities for convex functions. Mat. Balkanica (N. S.) 6 (1992), 215–222.
MR 1183627 |
Zbl 0834.26010
[10] S. S. Dragomir:
On Hadamard’s inequality for the convex mappings defined on a ball in the space and applications. Math. Inequal. Appl. 3 (2000), 177–187.
MR 1749295 |
Zbl 0951.26010
[12] S. S. Dragomir:
Some integral inequalities for differentiable convex functions. Makedon. Akad. Nauk Umet. Oddel. Mat.-Tehn. Nauk. Prilozi 13 (1992), 13–17.
MR 1262519 |
Zbl 0770.26009
[13] S. S. Dragomir:
Some remarks on Hadamard’s inequalities for convex functions. Extracta Math. 9 (1994), 88–94.
MR 1325288 |
Zbl 0984.26012
[16] S. S. Dragomir, C. Buşe:
Refinements of Hadamard’s inequality for multiple integrals. Utilitas Math. 47 (1995), 193–198.
MR 1330902
[17] S. S. Dragomir, Y. J. Cho and S. S. Kim:
Inequalities of Hadamard’s type for Lipschitzian mappings and their applications. J. Math. Anal. Appl. 245 (2000), 489–501.
DOI 10.1006/jmaa.2000.6769 |
MR 1758551
[18] S. S. Dragomir, S. Fitzpatrick:
Hadamard inequality for $s$-convex functions in the first sense and applications. Demonstratio Math. 31 (1998), 633–642.
MR 1658478
[19] S. S. Dragomir, S. Fitzpatrick:
The Hadamard’s inequality for $s$-convex functions in the second sense. Demonstratio Math. 32 (1999), 687–696.
MR 1740330
[20] S. S. Dragomir, N. M. Ionescu:
On some inequalities for convex-dominated functions. Anal. Numér. Théor. Approx. 19 (1990), 21–27.
MR 1159773
[21] S. S. Dragomir, D. S. Milośević and J. Sándor: On some refinements of Hadamard’s inequalities and applications. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 4 (1993), 3–10.
[22] S. S. Dragomir, B. Mond:
On Hadamard’s inequality for a class of functions of Godunova and Levin. Indian J. Math. 39 (1997), 1–9.
MR 1476079
[24] S. S. Dragomir, C. E. M. Pearce, and J. E. Pečarić:
On Jessen’s related inequalities for isotonic sublinear functionals. Acta Sci. Math. 61 (1995), 373–382.
MR 1377372
[25] S. S. Dragomir, J. E. Pečarić, and L. E. Persson:
Some inequalities of Hadamard type. Soochow J. Math. 21 (1995), 335–341.
MR 1348130
[26] S. S. Dragomir, J. E. Pečarić, and J. Sándor:
A note on the Jensen-Hadamard inequality. Anal. Numér. Théor. Approx. 19 (1990), 29–34.
MR 1159774
[27] S. S. Dragomir, G. H. Toader:
Some inequalities for $m$-convex functions. Studia Univ. Babeş-Bolyai Math. 38 (1993), 21–28.
MR 1863679
[28] A. M. Fink:
A best possible Hadamard inequality. Math. Inequal. Appl. 1 (1998), 223–230.
MR 1613456 |
Zbl 0907.26009
[29] A. M. Fink:
Toward a theory of best possible inequalities. Nieuw Arch. Wisk. 12 (1994), 19–29.
MR 1284677 |
Zbl 0827.26018
[30] A. M. Fink:
Two inequalities. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 6 (1995), 48–49.
MR 1367482 |
Zbl 0841.26009
[33] G. H. Hardy, J. E. Littlewood, and G. Pólya:
Inequalities. 2nd ed. Cambridge University Press, 1952.
MR 0046395
[34] K.-C. Lee, K.-L. Tseng:
On weighted generalization of Hadamard’s inequality for $g$ functions. Tamsui Oxf. J. Math. Sci. 16 (2000), 91–104.
MR 1772077
[35] A. Lupaş:
The Jensen-Hadamard inequality for convex functions of higher order. Octogon Math. Mag. 5 (1997), 8–9.
MR 1619472
[36] A. Lupaş:
A generalization of Hadamard’s inequality for convex functions. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 544–576 (1976), 115–121.
MR 0444865
[37] D. M. Maksimović:
A short proof of generalized Hadamard’s inequalities. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 634–677 (1979), 126–128.
MR 0579274
[39] D. S. Mitrinović, J. E. Pečarić, and A. M. Fink:
Classical and New Inequalities in Analysis. Kluwer Academic Publishers, Dordrecht, 1993.
MR 1220224
[42] E. Neuman:
Inequalities involving multivariate convex functions. II. Proc. Amer. Math. Soc. 109 (1990), 965–974.
MR 1009996 |
Zbl 0699.26009
[43] C. P. Niculescu: A note on the dual Hermite-Hadamard inequality. The Math. Gazette (July 2000), .
[44] C. P. Niculescu:
Convexity according to the geometric mean. Math. Inequal. Appl. 3 (2000), 155–167.
MR 1749293 |
Zbl 0952.26006
[46] C. E. M. Pearce, A. M. Rubinov:
$P$-functions, quasi-convex functions and Hadamard-type inequalities. J. Math. Anal. Appl. 240 (1999), 92–104.
DOI 10.1006/jmaa.1999.6593 |
MR 1728202
[47] J. E. Pečarić:
Remarks on two interpolations of Hadamard’s inequalities. Makedon. Akad. Nauk. Umet. Oddel. Mat.-Tehn. Nauk. Prilozi 13 (1992), 9–12.
MR 1262518
[48] J. Pečarić, S. S. Dragomir:
A generalization of Hadamard’s inequality for isotonic linear functionals. Rad. Mat. 7 (1991), 103–107.
MR 1126888
[49] J. Pečarić, F. Proschan, and Y. L. Tong:
Convex Functions, Partial Orderings and Statistical Applications. Academic Press, Boston, 1992.
MR 1162312
[50] J. Sándor:
An application of the Jensen-Hadamard inequality. Nieuw Arch. Wisk. 8 (1990), 63–66.
MR 1056662
[51] J. Sándor:
On the Jensen-Hadamard inequality. Studia Univ. Babeş-Bolyai, Math. 36 (1991), 9–15.
MR 1280888
[52] P. M. Vasić, I. B. Lacković, and D. M. Maksimović: Note on convex functions. IV. On Hadamard’s inequality for weighted arithmetic means. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 678–715 (1980), 199–205.
[53] G. S Yang, M. C. Hong:
A note on Hadamard’s inequality. Tamkang J. Math. 28 (1997), 33–37.
MR 1457248
[54] G. S. Yang, K. L. Tseng:
On certain integral inequalities related to Hermite-Hadamard inequalities. J. Math. Anal. Appl. 239 (1999), 180–187.
DOI 10.1006/jmaa.1999.6506 |
MR 1719056