Previous |  Up |  Next

Article

Keywords:
nonlinear transport; operator splitting; transport of contaminants; dual-well flow
Summary:
Numerical approximation schemes are discussed for the solution of contaminant transport with adsorption in dual-well flow. The method is based on time stepping and operator splitting for the transport with adsorption and diffusion. The nonlinear transport is solved by Godunov’s method. The nonlinear diffusion is solved by a finite volume method and by Newton’s type of linearization. The efficiency of the method is discussed.
References:
[1] J.  Bear: Dynamics of Fluid in Porous Media. Elsevier, New York, 1972.
[2] D.  Constales, J. Kačur, and R. Van Keer: Parameter identification by a single injection-extraction well. Inverse problems 18 (2002), 1605–1620. DOI 10.1088/0266-5611/18/6/312 | MR 1955908
[3] D. Constales, J. Kačur and B. Malengier: Precise numerical scheme for contaminant transport in dual-well flow. Water Resources Research, Accepted.
[4] R. J.  LeVeque: Numerical Methods for Conservation Laws. Birkhäuser Verlag, Basel, 1990. MR 1077828 | Zbl 0723.65067
[5] W.  Jäger, J.  Kačur: Solution of doubly nonlinear and degenerate parabolic problems by relaxation scheme. Math. Model. Numer. Anal. 29 (1995), 605–627. DOI 10.1051/m2an/1995290506051 | MR 1352864
[6] J. Kačur: Solution to strongly nonlinear parabolic problems by a linear approximation scheme. IMA J.  Num. Anal. 19 (1999), 119–154. DOI 10.1093/imanum/19.1.119 | MR 1670689
[7] J.  Kačur, P.  Frolkovič: Semi-analytical solutions for contaminant transport with nonlinear sorption in 1D. SFB 359, Vol.  24, University of Heidelberg, 2002, pp. 1–20, preprint. MR 2261836
[8] M. G. Crandall, A.  Majda: The method of fractional steps for conservation laws. Numer. Math. 34 (1980), 285–314. DOI 10.1007/BF01396704 | MR 0571291
[9] L. W.  Gelhar, M. A.  Collins: General analysis of longitudinal dispersion in nonuniform flow. Water Resour. Res. 7 (1971), 1511–1521. DOI 10.1029/WR007i006p01511
[10] H. M.  Hajdjema: Analytic Modelling of Groundwater Flow. Academic Press, New York, 1995.
[11] R.  Haggerty, S. A. McKenna, and L. C.  Meigs: On the late-time behavior of tracer test breakthrough curves. Water Resour. Res. 36 (2000), 3467–3479. DOI 10.1029/2000WR900214
[12] R.  Haggerty, S. W.  Fleming, L. C. Meigs, and S. A.  McKenna: Tracer tests in a fractured dolomite  2: Analysis of mass transfer in single-well injection-withdrawal tests. Water Resources Research 37 (2001), 1129–1142. DOI 10.1029/2000WR900334
[13] J. A.  Hoopes, D. R. F.  Harleman: Dispersion in radial flow from a recharge well. J. Geophys. Res. 72 (1967), 3595–3607.
[14] J. A.  Hoopes, D. R. F.  Harleman: Wastewater recharge and dispersion in porous media. J.  Hydraul. Div. Am. Soc. Civ. Eng. 93 (1967), 51–71.
[15] K. H. Karlsen, K.-A.  Lie,: An unconditionally stable splitting for a class of nonlinear parabolic equations. IMA J.  Numer. Anal. 19 (1999), 609–635. DOI 10.1093/imanum/19.4.609 | MR 1719110
[16] A.  Mercado: The spreading problem of injected water in a permeability stratified aquifer. Int. Assoc. Sci. Hydrology Publ. 72 (1967), 23–36.
[17] A.  Mercado, E. Halevy: Determining the average porosity and permeability of a stratified aquifer with the aid of radio-active tracers. Water Resour. Res. 2 (1966), 525–532. DOI 10.1029/WR002i003p00525
[18] A.  Mercado: Nitrate and chloride pollution of aquifers—a regional study with the aid of a single cell model. Water Resour. Res. 12 (1976), 731–747. DOI 10.1029/WR012i004p00731
[19] S. V.  Patankar: Numerical Heat Transfer and Fluid Flow. Taylor & Francis, Washington D. C., 1980. Zbl 0521.76003
[20] J. F.  Pickens, G. E. Grisak: Scale-dependent dispersion in a stratified granular aquifer. Water Resour. Res. 17 (1981), 1191–1211. DOI 10.1029/WR017i004p01191
[21] M. H.  Schroth, J. D.  Istok, and R.  Haggerty: In situ evaluation of solute retardation using single-well push-pull tests. Adv. Water Resour. 24 (2001), 105–117. DOI 10.1016/S0309-1708(00)00023-3
[22] M. R.  Spiegel: Mathematical Handbook of Formulas and Tables. McGraw Hill, New York, 1968.
[23] Ne-Zheng Sun: Mathematical Model of Groundwater Pollution. Springer Verlag, New York, 1996. MR 1369246
[24] C. Welly, L. W.  Gelhar: Evaluation of longitudinal dispersivity from nonuniform flow tracer tests. Journ. Hydrology 153 (1971), 71–102.
Partner of
EuDML logo