[1] L. Caffarelli, R. Kohn and L. Nirenberg:
Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math. 35 (1982), 771–831.
DOI 10.1002/cpa.3160350604 |
MR 0673830
[2] Y. Giga, H. Sohr:
Abstract $L^p$ estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains. J. Funct. Anal. 102 (1991), 72–94.
DOI 10.1016/0022-1236(91)90136-S |
MR 1138838
[3] P. Kučera, Z. Skalák: Generalized energy inequality for suitable weak solutions of the Navier-Stokes equations. In: Proceedings of seminar Topical Problem of Fluid Mechanics 2003, Institute of Thermomechanics AS CR, J. Příhoda, K. Kozel (eds.), Prague, 2003, pp. 61–66.
[4] A. Kufner, O. John, S. Fučík: Function Spaces. Academia, Prague, 1979.
[5] J. Neustupa, A. Novotný, P. Penel: A remark to interior regularity of a suitable weak solution to the Navier-Stokes equations. Preprint, University of Toulon-Var, 1999.
[7] Z. Skalák, P. Kučera:
Remark on regularity of weak solutions to the Navier-Stokes equations. Comment. Math. Univ. Carolin. 42 (2001), 111–117.
MR 1825376
[8] R. Temam:
Navier-Stokes Equations, Theory and Numerical Analysis. North-Holland Publishing Company, Amsterdam-New York-Oxford. Revised edition, 1979.
MR 0603444 |
Zbl 0426.35003