Previous |  Up |  Next

Article

Keywords:
transonic flow; mathematical models; numerical solution
Summary:
The paper deals with numerical solution of internal flow problems. It mentions a long tradition of mathematical modeling of internal flow, especially transonic flow at our department. Several models of flow based on potential equation, Euler equations, Navier-Stokes and Reynolds averaged Navier-Stokes equations with proper closure are considered. Some mathematical and numerical properties of the model are mentioned and numerical results achieved by in-house developed methods are presented.
References:
[1] K. Kozel, J. Polášek, and M. Vavřincová: Numerical solution of transonic flow through a cascade with slender profiles. Proceedings of 6$^{\mathrm th}$ International conference on numerical methods in fluid dynamics, SAN Moscow, 1979, and Lecture notes.
[2] K. Kozel, M. Janda, and R.  Liska: Composite schemes on triangular meshes. Proceedings of the Conference on Hyperbolic Problems: Theory, Numerics, Applications, Magdeburg 2000, H. Freistühler, G. Warnecke (eds.), Birkhäuser, Basel, 2002, pp. 563–572. MR 1882958
[3] J. Fürst, K. Kozel: Numerical solution of inviscid and viscous flow using modern schemes and quadrilateral or triangular mesh. Math. Bohem. 126 (2001), 379–393. MR 1844276
[4] J.  Fořt, J. Fürst, J. Halama, K. Kozel: Numerical simulation of 3D transonic flow. Proceedings of IMACS congress, Lausanne, August 2000, , , .
[5] K.  Kozel, J. Fürst, J. Horák, and D. Vaněk: Central and upwind schemes applied in internal aerodynamics of transonic flows. Proceedings of the conference Topical Problems of Fluid Mechanics ’99, K. Kozel, J. Příhoda (eds.), IT AS CR, Prague, 1999, pp. 19–22.
[6] J.  Fořt: Mathematical models of inviscid compressible flow in profile cascade and its numerical solution. Habilitation Thesis, Fac. of Mechanical Eng., TU Prague, 1994. (Czech)
[7] P. G.  Ciarlet, M. H. Schultz, R. S. Varga: Numerical methods of high-order accuracy for nonlinear boundary value problems. Numer. Math. 13 (1969), 51–77. DOI 10.1007/BF02165273 | MR 0250496
[8] M.  Feistauer, J. Mandel, J. Nečas: Entropy regularization of the transonic potential flow problem. Comment. Math. Univ. Carol. 25 (1984), 431–443. MR 0775562
[9] M. Feistauer, J. Nečas: On the solvability of transonic potential flow problem. Z.  Anal. Anwendungen (1984), . MR 0807140
Partner of
EuDML logo