[2] J. M. Alonso, R. Ortega:
Global asymptotic stability of a forced Newtonian system with dissipation. Journal of Math. Anal. and Appl. 196 (1995), 965–986.
DOI 10.1006/jmaa.1995.1454 |
MR 1365234
[3] J. Berkovits, P. Drábek, H. Leinfelder, V. Mustonen and G. Tajčová:
Time-periodic oscillations in suspension bridges: existence of unique solution. Nonlin. Analysis: Real Word Appl. 1 (2000), 345–362.
MR 1791531
[4] J. Berkovits, V. Mustonen:
Existence and multiplicity results for semilinear beam equations. Colloquia Mathematica Societatis János Bolyai Budapest, 1991, pp. 49–63.
MR 1468743
[5] J. Čepička: Numerical experiments in nonlinear problems. PhD. Thesis, University of West Bohemia, Pilsen, 2002. (Czech)
[6] Y. Chen, P. J. McKenna:
Travelling waves in a nonlinear suspended beam: theoretical results and numerical observations. Journal of Diff. Eq. 136 (1997), 325–355.
DOI 10.1006/jdeq.1996.3155 |
MR 1448828
[7] Q. H. Choi, K. Choi, T. Jung:
The existence of solutions of a nonlinear suspension bridge equation. Bull. Korean Math. Soc. 33 (1996), 503–512.
MR 1424092
[8] Q. H. Choi, T. Jung, P. J. McKenna:
The study of a nonlinear suspension bridge equation by a variational reduction method. Applicable Analysis 50 (1993), 73–92.
DOI 10.1080/00036819308840185 |
MR 1281204
[9] Y. S. Choi, K. S. Jen, P. J. McKenna:
The structure of the solution set for periodic oscillations in a suspension bridge model. IMA Journal of Applied Math. 47 (1991), 283–306.
DOI 10.1093/imamat/47.3.283 |
MR 1141492
[10] P. Drábek:
Jumping nonlinearities and mathematical models of suspension bridges. Acta Math. Inf. Univ. Ostraviensis 2 (1994), 9–18.
MR 1309060
[11] P. Drábek, G. Holubová:
Bifurcation of periodic solutions in symmetric models of suspension bridges. Topological Methods in Nonlin. Anal. 14 (1999), 39–58.
DOI 10.12775/TMNA.1999.021
[14] J. Dupré: Bridges. Black Dog & Levenathal Publishers, New York, 1997.
[16] J. Glover, A. C. Lazer, P. J. McKenna:
Existence and stability of large scale nonlinear oscillations in suspension bridges. J. Appl. Math. Physics (ZAMP) 40 (1989), 172–200.
DOI 10.1007/BF00944997 |
MR 0990626
[17] G. Holubová, A. Matas:
Initial-boundary value problem for nonlinear string-beam system. J. Math. Anal. Appl, Accepted.
MR 2020197
[19] L. D. Humphreys, P. J. McKenna:
Multiple periodic solutions for a nonlinear suspension bridge equation. IMA Journal of Applied Math (to appear).
MR 1739628
[20] D. Jacover, P. J. McKenna:
Nonlinear torsional flexings in a periodically forced suspended beam. Journal of Computational and Applied Math. 52 (1994), 241–265.
DOI 10.1016/0377-0427(94)90359-X |
MR 1310133
[21] A. C. Lazer, P. J. McKenna:
Fredholm theory for periodic solutions of some semilinear P.D.Es with homogeneous nonlinearities. Contemporary Math. 107 (1990), 109–122.
DOI 10.1090/conm/107/1066474 |
MR 1066474
[23] A. C. Lazer, P. J. McKenna:
Existence, uniqueness, and stability of oscillations in differential equations with asymmetric nonlinearities. Trans. Amer. Math. Society 315 (1989), 721–739.
DOI 10.1090/S0002-9947-1989-0979963-1 |
MR 0979963
[24] A. C. Lazer, P. J. McKenna:
Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis. SIAM Review 32 (1990), 537–578.
DOI 10.1137/1032120 |
MR 1084570
[25] A. C. Lazer, P. J. McKenna:
Large scale oscillatory behaviour in loaded asymmetric systems. Ann. Inst. Henri Poincaré, Analyse non lineaire 4 (1987), 244–274.
MR 0898049
[27] G. Liţcanu:
A mathematical model of suspension bridges. Appl. Math (to appear).
MR 2032147
[28] J. Malík:
Oscillations in cable-stayed bridges: existence, uniqueness, homogenization of cable systems. J. Math. Anal. Appl. 226 (2002), 100–126.
MR 1876772
[29] J. Malík:
Mathematical modelling of cable-stayed bridges: existence, uniqueness, continuous dependence on data, homogenization of cable systems. Appl. Math (to appear).
MR 2032146
[30] J. Malík: Nonlinear oscillations in cable-stayed bridges. (to appear).
[31] A. Matas, J. Očenášek: Modelling of suspension bridges. Proceedings of Computational Mechanics 2, 2002, pp. 275–278.
[32] P. J. McKenna, K. S. Moore:
Mathematical arising from suspension bridge dynamics: Recent developements. Jahresber. Deutsch. Math.-Verein 101 (1999), 178–195.
MR 1726743
[33] P. J. McKenna, W. Walter:
Nonlinear oscillations in a suspension bridge. Arch. Rational Mech. Anal. 98 (1987), 167–177.
DOI 10.1007/BF00251232 |
MR 0866720