[1] A. Babin, S. Chow:
Uniform long-time behavior of solutions of parabolic equations depending on slow time. J. Differential Equations 150 (1998), 264–316.
DOI 10.1006/jdeq.1998.3450 |
MR 1658609
[2] A. Babin, B. Nicolaenko:
Exponential attractors of reaction-diffusion systems in an unbounded domain. J. Dynam. Differential Equations 7 (1995), 567–590.
DOI 10.1007/BF02218725 |
MR 1362671
[3] A. V. Babin, M. I. Vishik:
Attractors of Evolution Equations. North-Holland, Amsterdam, 1992.
MR 1156492
[5] J. W. Cahn, J. E. Hilliard:
Free energy of a nonuniform system I. Interfacial free energy. J. Chem. Phys. 2 (1958), 258–267.
DOI 10.1063/1.1744102
[6] M. Carrive, A. Miranville and A. Piétrus:
The Cahn-Hilliard equation for deformable elastic continua. Adv. Math. Sci. Appl. 10 (2000), 530–569.
MR 1807441
[8] M. Carrive, A. Miranville, A. Piétrus and J. M. Rakotoson:
Weakly coupled dynamical systems and applications. Preprint No 121, Université de Poitiers.
MR 1919340
[9] V. V. Chepyzhov, M. I. Vishik:
Attractors of nonautonomous dynamical systems and their dimension. J. Math. Pures Appl. 73 (1994), 279–333.
MR 1273705
[10] A. Eden, C. Foiaş and V. Kalantarov:
A remark on two constructions of exponential attractors for $\alpha $-contractions. J. Dynam. Differential Equations 10 (1998), 37–45.
DOI 10.1023/A:1022636328133 |
MR 1607533
[11] A. Eden, C. Foiaş, B. Nicolaenko and R. Temam:
Exponential Attractors for Dissipative Evolution Equations. Masson, 1994.
MR 1335230
[12] M. Efendiev, A. Miranville and S. Zelik:
Exponential attractors for a nonlinear reaction-diffusion system in $R^3$. C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), 713–718.
DOI 10.1016/S0764-4442(00)00259-7 |
MR 1763916
[13] M. Efendiev, A. Miranville and S. Zelik: The infinite dimensional exponential attractor for a nonautonomous reaction-diffusion system. Math. Nachr (to appear).
[14] P. Fabrie, A. Miranville:
Exponential attractors for nonautonomous first-order evolution equations. Discrete Contin. Dynam. Systems 4 (1998), 225–240.
MR 1617294
[15] E. Feireisl:
Exponentially attracting finite dimensional sets for the processes generated by nonautonomous semilinear wave equations. Funkcial. Ekvac. 36 (1993), 1–10.
MR 1232076 |
Zbl 0823.35119
[17] C. Galusinski: Thèse. Université Bordeaux-I, 1996.
[18] J. M. Ghidaglia, R. Temam:
Attractors for damped nonlinear hyperbolic equations. J. Math. Pures Appl. 66 (1987), 273–319.
MR 0913856
[20] J. Hale:
Asymptotic Behavior of Dissipative Systems. Math. Surveys and Monographs, Vol. 25, AMS, Providence, 1988.
MR 0941371 |
Zbl 0642.58013
[22] O. Ladyzhenskaya:
Attractors for Semigroups and Evolution Equations. Cambridge University Press, Cambridge, 1991.
MR 1133627 |
Zbl 0755.47049
[25] A. Miranville:
Exponential attractors for a class of evolution equations by a decomposition method. II. The nonautonomous case. C. R. Acad. Sci. Paris Ser. I Math. 328 (1999), 907–912.
MR 1689877
[26] A. Miranville:
Some generalizations of the Cahn-Hilliard equation. Asymptotic Anal. 22 (2000), 235–259.
MR 1753766 |
Zbl 0953.35055
[29] G. R. Sell: Nonautonomous differential equations and topological dynamics, I, II. Trans. Amer. Math. Soc. 127 (1967), 241–262, 263–283.
[30] F. Shuhong:
Global attractor for general nonautonomous dynamical systems. Nonlinear World 2 (1995), 191–216.
MR 1376953 |
Zbl 0822.34048
[33] R. Temam:
Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed. Springer-Verlag, New-York, 1997.
MR 1441312 |
Zbl 0871.35001