[1] D. Andreucci, R. Gianni:
Global existence and blow up in a parabolic problem with nonlocal dynamical boundary conditions. Adv. Differential Equations 1 (1996), 729–752.
MR 1392003
[2] D. N. Arnold, F. Brezzi:
Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19 (1985), 7–32.
DOI 10.1051/m2an/1985190100071 |
MR 0813687
[3] J. H. Bramble, P. Lee:
On variational formulations for the Stokes equations with nonstandard boundary conditions. RAIRO Modél. Math. Anal. Numér. 28 (1994), 903–919.
DOI 10.1051/m2an/1994280709031 |
MR 1309419
[4] H. De Schepper, M. Slodička:
Recovery of the boundary data for a linear second order elliptic problem with a nonlocal boundary condition. ANZIAM Journal (C) 42 (2000), 518–535.
DOI 10.21914/anziamj.v42i0.611 |
MR 1810647
[5] A. Friedman:
Partial Differential Equations. Robert E. Krieger Publishing Company, Hungtinton, New York, 1976.
MR 0454266
[7] J. Kačur:
Method of Rothe in Evolution Equations. Teubner Texte zur Mathematik Vol. 80. Teubner, Leipzig, 1985.
MR 0834176
[8] J. Nečas:
Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967.
MR 0227584
[11] K. Rektorys:
The Method of Discretization in Time and Partial Differential Equations. Reidel Publishing Company, Dordrecht-Boston-London, 1982.
MR 0689712 |
Zbl 0522.65059
[12] M. Slodička: A monotone linear approximation of a nonlinear elliptic problem with a non-standard boundary condition. In: Algoritmy 2000, A. Handlovičová, M. Komorníková, K. Mikula and D. Ševčovič (eds.), Slovak University of Technology, Faculty of Civil Engineering, Department of Mathematics and Descriptive Geometry, Bratislava, 2000, pp. 47–57.
[13] M. Slodička:
Error estimates of an efficient linearization scheme for a nonlinear elliptic problem with a nonlocal boundary condition. RAIRO Modél. Math. Anal. Numér. 35 (2001), 691–711.
DOI 10.1051/m2an:2001132 |
MR 1862875 |
Zbl 0997.65124
[15] R. Van Keer, L. Dupré and J. Melkebeek:
Computational methods for the evaluation of the electromagnetic losses in electrical machinery. Arch. Comput. Methods Engrg. 5 (1999), 385–443.
DOI 10.1007/BF02905911 |
MR 1675223
[16] R. Van Keer, M. Slodička: Numerical modelling for the recovery of an unknown flux in semilinear parabolic problems with nonstandard boundary conditions. In: Proceedings European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona, E. Onate, G. Bugeda and B. Suárez (eds.), Barcelona, 2000.
[17] R. Van Keer, M. Slodička:
Numerical techniques for the recovery of an unknown Dirichlet data function in semilinear parabolic problems with nonstandard boundary conditions. In: Numerical Analysis and Its Applications, L. Vulkov, J. Wasniewski and P. Yalamov (eds.), Springer, 2001, pp. 467–474.
MR 1938440