[1] R. P. Agarwal:
Difference Equations and Inequalities, Theory, Methods, and Applications. Marcel Dekker, Inc., New York, 1992.
MR 1155840 |
Zbl 0925.39001
[2] U. M. Ascher, R. M. M. Mattheij and R. D. Russell:
Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. Prentice Hall, New Jersey, 1988.
MR 1000177
[3] S. Atdaev:
On a method of two-sided approximations for a boundary value problem. Izv. Acad. Nauk. Turkm. Ser. Fiz.-Mat. Tekhn. Khim. Geol. Nauk, No. 1 (1985), 8–10. (Russian)
MR 0798362 |
Zbl 0649.34024
[4] P. B. Bailey, L. F. Shampine and P. E. Waltman:
Nonlinear Two Point Boundary Value Problems. Academic Press, New York and London, 1968.
MR 0230967
[5] V. L. Bakke, Z. Jackiewicz:
The numerical solution of boundary-value problems for differential equations with state dependent deviating arguments. Appl. Math. 34 (1989), 1–17.
MR 0982339
[6] A. Bellen:
A Runge-Kutta-Nyström method for delay differential equations. In: Numerical Boundary Value ODEs, U. M. Ascher, R. D. Russell (eds.), Birkhäuser, Boston, Basel, Stuttgard, 1985, pp. 271–285.
MR 0832900 |
Zbl 0566.65066
[7] A. Bellen, M. Zennaro:
A collocation method for boundary value problems of differential equations with functional arguments. Computing 32 (1984), 307–318.
DOI 10.1007/BF02243775 |
MR 0748933
[8] S. R. Bernfeld, V. Lakshmikantham:
An Introduction to Nonlinear Boundary Value Problems. Academic Press, New York, London, 1974.
MR 0445048
[10] B. A. Chartres, R. S. Stepleman:
Convergence of linear multistep methods for differential equations with discontinuities. Numer. Math. 27 (1976), 1–10.
DOI 10.1007/BF01399080 |
MR 0455409
[11] P. Chocholaty, L. Slahor:
A numerical method to boundary value problems for second order delay-differential equations. Numer. Math. 33 (1979), 69–75.
DOI 10.1007/BF01396496 |
MR 0545743
[12] J. W. Daniel, R. E. Moore:
Computation and Theory in Ordinary Differential Equations. W. H. Freeman and Company, San Francisco, 1970.
MR 0267765
[14] L. J. Grimm, K. Schmitt:
Boundary value problems for differential equations with deviating arguments. Aequationes Math. 4 (1970), 176–190.
DOI 10.1007/BF01817758 |
MR 0262632
[15] Z. Jackiewicz, M. Kwapisz:
On the convergence of multistep methods for the Cauchy problem for ordinary differential equations. Computing 20 (1978), 351–361.
DOI 10.1007/BF02252383 |
MR 0619909
[17] T. Jankowski:
Difference methods for boundary value problems of deviated differential equations with discontinuities. Zeszyty Nauk. Politech. Gdańsk. Mat. 15 (1991), 55–66.
Zbl 0744.34066
[18] V. Lakshmikantham, D. Trigiante:
Theory of Difference Equations. Academic Press, Inc., Toronto, 1988.
MR 0939611
[19] K. de Nevers, K. Schmitt:
An application of shooting method to boundary value problems for second order delay equations. J. Math. Anal. Appl. 36 (1971), 588–597.
DOI 10.1016/0022-247X(71)90041-2 |
MR 0298166
[20] F. Zh. Sadyrbaev:
Solutions of a boundary value problem for a second-order ordinary differential equations. Latv. Mat. Ezhegodnik 31 (1988), 87–90. (Russian)
MR 0942118
[21] S. Saito, M. Yamamoto:
Boundary value problems of quasilinear ordinary differential systems on a finite interval. Math. Japon. 34 (1989), 447–458.
MR 1003933
[22] J. Stoer, R. Bulirsch:
Introduction to Numerical Analysis. Springer-Verlag, New York-Heidelberg-Berlin, 1993.
MR 1295246
[23] Ya. Virzhbitskii:
Necessary and sufficient conditions for the solvability of a two-point boundary value problem. Boundary Value Problems for Ordinary Differential Equations, Latv. Gos. Univ. Riga, 1987, pp. 53–68. (Russian)
MR 0901975