Previous |  Up |  Next

Article

Keywords:
mixed linear model; power function; threshold ellipsoid; nonsensitiveness region
Summary:
The problem is to determine nonsensitiveness regions for threshold ellipsoids within a regular mixed linear model.
References:
[1] J. Janko: Statistical Tables. Academia, Praha, 1958. (Czech) MR 0150924
[2] L. Kubáček: Criterion for approximation of variance components in regression models. Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 34 (1995), 91–108. MR 1447258
[3] L. Kubáček: Linear model with inaccurate variance components. Appl. Math. 41 (1996), 433–445. MR 1415250
[4] L. Kubáček, L. Kubáčková: Nonsensitiveness regions in universal models. Math. Slovaca 50 (2000), 219–240. MR 1763121
[5] L. Kubáček, L. Kubáčková, E. Tesaříková and J. Marek: How the design of an experiment influences the nonsensitiveness regions in models with variance components. Appl. Math. 43 (1998), 439–460. DOI 10.1023/A:1023269321385 | MR 1652104
[6] L. Kubáčková: Joint confidence and threshold ellipsoids in regression models. Tatra Mt. Math. Publ. 7 (1996), 157–160. MR 1408465
[7] E. Lešanská: Optimization of the size of nonsensitiveness regions. Appl. Math. 47 (2002), 9–23. DOI 10.1023/A:1021750700055 | MR 1876489
[8] C. R. Rao: Statistical Inference and Its Applications. J. Wiley, New York-London-Sydney, 1965. MR 0221616 | Zbl 0137.36203
Partner of
EuDML logo