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Abstract. It is known that the vector stop operator with a convex closed characteristic Z
of class C1 is locally Lipschitz continuous in the space of absolutely continuous functions if
the unit outward normal mapping n is Lipschitz continuous on the boundary ∂Z of Z. We
prove that in the regular case, this condition is also necessary.
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1. Introduction

Mathematical models of multidimensional hysteresis phenomena in elastoplasticity

or ferromagnetism are often based on the variational inequality (see e.g. [1], [2], [4],
[5], [10], [12], [15], [16])

(1.1)





〈u̇(t)− ẋ(t), x(t) − w〉 � 0 ∀w ∈ Z,
x(t) ∈ Z ∀t ∈ [0, T ],
x(0) = x0 ∈ Z,

where u ∈W 1,1(0, T ;X) is a given function, X a Hilbert space endowed with a scalar

product 〈·, ·〉, Z ⊂ X is a convex closed set, t ∈ [0, T ] is the time variable and the
dot denotes the derivative with respect to t.

The existence of a unique solution x ∈W 1,1(0, T ;X) to problem (1.1) is a special
case of classical results for evolution variational inequalities, cf. e.g. [3], [10].
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In stochastics, inequality (1.1) is known as a special case of the Skorokhod problem

([8], [9]). In the theory of hysteresis operators, the solution mapping

(1.2) S : Z ×W 1,1(0, T ;X)→ W 1,1(0, T ;X) : (x0, u) �→ x

is called the stop operator with characteristic Z and its properties have been sys-
tematically studied (see [11], [16], [12], [13]) together with its extension to the space

C([0, T ];X) of continuous functions. The dynamics described by the operator S is
a special case of a sweeping process, see [14].

Analytical properties of the stop in the space W 1,1(0, T ;X) endowed with the
norm

(1.3) |u|1,1 := |u(0)|+
∫ T

0
|u̇(t)| dt

depend substantially on the geometry of the characteristic Z. The operator
S : Z ×W 1,1(0, T ;X)→W 1,1(0, T ;X) is always continuous, see Theorem I.3.12

of [12]. It was conjectured without proof in [11] that this mapping is Lipschitz
continuous if Z is a polyhedron and locally Lipschitz continuous if the boundary

∂Z of Z is smooth. These statements have been rigorously proved only recently in
[7] and [6], respectively. In [6], it was shown that the Lipschitz continuity of the

mapping

(1.4) n : ∂Z → ∂B1(0)

(by Br(z) we denote the ball centered at z ∈ X with radius r > 0), which with each
x ∈ ∂Z associates the unit outward normal n(x) to Z at the point x, is sufficient for
the local Lipschitz continuity of the stop. Another proof which also yields an explicit

upper bound for the Lipschitz coefficient (optimal if Z is a ball) can be found in [13]
as a generalization of the technique used in [5] for the ball.

Example 3.2 of [6] shows that the stop is not necessarily locally Lipschitz contin-
uous if the mapping n is only 1/2-Hölder continuous. The aim of this paper is to fill

the gap and to prove that the local Lipschitz continuity cannot be expected if ∂Z is
of class C1 and the ratio |n(x) − n(y)| / |x− y|, x, y ∈ ∂Z, is unbounded.
Let us note that this is not just an academic question. A precise upper bound for

the Lipschitz coefficient of the stop has been substantially exploited in [5] for proving
the well-posedness of constitutive laws of elastoplasticity with nonlinear kinematic

hardening.
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2. Main result

We consider the simplest case X = �
2 and fix a convex closed set Z ⊂ X of

class C1 in such a way that there exists a point x∗ ∈ ∂Z for which we have

(2.1) lim
x→x∗
x∈∂Z

|n(x)− n(x∗)| / |x− x∗| = +∞.

By shifting and rotating the coordinate system we may assume that x∗ = 0 and that
there exists ε > 0 such that

(2.2) Z ∩
(
[−ε, ε]2

)
=

{(
a

b

)
∈ [−ε, ε]2; b � G(a)

}
,

where G : [−ε, ε]→ �
+ is a convex function, G(0) = 0, and its derivative g = G′ is

continuous, increasing, g(0) = 0 and lim
a→0+

g(a)/a = +∞ (see Fig. 1).
We make the following simplifying assumptions.

Hypothesis 2.1.
(i) G : [−ε, ε]→ �

+ is convex and even, G(0) = 0,

(ii) g = G′ is increasing and concave in [0, ε[, g(0) = 0, g′(0+) = +∞.
The rest of this paper is devoted to the proof of the following result.

Theorem 2.2. Let Z ⊂ �
2 be a convex closed set satisfying condition (2.2) and

Hypothesis 2.1. Then for every R > 0 there exists a function u ∈ W 1,1(0, 1;�2)

such that |u|1,1 � 1, and initial conditions x0, y0 ∈ Z such that the functions x =
S (x0, u), y = S (y0, u), where S is the stop operator (1.2), satisfy the inequality

(2.3)
∫ 1

0
|ẋ(t)− ẏ(t)| dt � R

∣∣x0 − y0
∣∣ .

�
−ε 0 aε

b = G(a)

ε

b

Z

Figure 1. The convex characteristic Z.
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3. Proof of Theorem 2.2

We follow the construction from Example 3.2 of [6]. Taking a smaller ε > 0 if
necessary, we may assume that

(3.1) ε <
1

2
√
2
, g(ε) <

1√
2
.

We fix some a0 ∈ ]0, ε[ (arbitrary, for the moment) and construct a sequence {ak; k ∈
� ∪ {0}} by induction in the following way. Let a0 > a1 > . . . > ak > 0 be already

given and let us consider the differential equation

(3.2) ṙk =
1− g(ak − t) g(rk)
1 + g2(rk)

, rk(0) = 0,

in the domain (t, rk) ∈ Dk := [0, ak]× [0, ak]. The function

F : (t, rk) �→
1− g(ak − t)g(rk)
1 + g2(rk)

is continuous in Dk and 0 < F (t, rk) < 1 whenever (t, rk) ∈ Dk, rk > 0. Moreover,

the function rk �→ F (t, rk) is decreasing in [0, ak] for every t ∈ [0, ak]; problem (3.2)
therefore admits in Dk a unique maximal solution rk : [0, ak]→ [0, ak], 0 < ṙk(t) < 1

for all t ∈ ]0, ak[. Putting

(3.3) ak+1 := rk(ak)

we thus have 0 < ak+1 < ak and the induction step is complete. By construction,

we moreover have for every k ∈ � ∪ {0}

(3.4) ak+1 � ak
1− g2(ak)
1 + g2(ak)

� ak
(
1− 2g2(ak)

)
.

For k ∈ � ∪ {0} put

(3.5) t0 := 0, tk+1 := tk + ak, T :=
∞∑

k=0

ak � ∞.

We choose two points x0, y0 ∈ Z in the form

(3.6) x0 :=

( −a0
G(a0)

)
, y0 :=

(
0
0

)
,
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and define functions u, x, y : [0, T [→ �
2 by the formulas

(3.7) u(0) := 0, x(0) := x0, y(0) := y0,

(3.8) u(t) :=





u(tj) +

(
t− tj

G(tj+1 − t)−G(aj)

)
for t ∈ ]tj , tj+1], j even,

u(tj) +

(
tj − t

G(tj+1 − t)−G(aj)

)
for t ∈ ]tj , tj+1], j odd,

(3.9) x(t) :=




x(tj) + u(t)− u(tj) for t ∈ ]tj , tj+1], j even,( −rj(t− tj)
G(rj(t− tj))

)
for t ∈ ]tj , tj+1], j odd,

(3.10) y(t) :=





(
rj(t− tj)

G(rj(t− tj))

)
for t ∈ ]tj , tj+1], j even,

y(tj) + u(t)− u(tj) for t ∈ ]tj , tj+1], j odd,

where rj : [0, aj ]→ [0, aj+1] is the solution of equation (3.2) for j ∈ � ∪ {0}.
Let us check by induction that we have

(3.11) x = S (x0, u), y = S (y0, u) in [0, T [.

Assume that identities (3.11) hold for t ∈ [0, tk], and let for instance k be even, k � 0
(the case ‘k odd’ is analogous). For k � 2 we have

(3.12) x(tk) =

( −rk−1(tk − tk−1)
G(rk−1(tk − tk−1))

)
=

( −ak
G(ak)

)
,

y(tk) = y(tk−1) + u(tk)− u(tk−1)(3.13)

=

(
rk−2(tk−1 − tk−2)

G(rk−2(tk−1 − tk−2))

)
−

(
ak−1

G(ak−1)

)
=

(
0
0

)
,

for k = 0 the above identities hold by the choice (3.6), (3.7) of initial conditions. For

t ∈ ]tk, tk+1] we have by definition

x(t) := x(tk) + u(t)− u(tk) =

(
t− tk+1

G(tk+1 − t)

)
, y(t) :=

(
rk(t− tk)

G(rk(t− tk))

)
.

In particular, both x, y are absolutely continuous in [0, tk+1] and x(t), y(t) belong
to Z for all t ∈ [tk, tk+1]. Since ẋ(t) = u̇(t) for all t ∈ ]tk, tk+1[, the function x is

5



automatically a solution of problem (1.1) in [0, tk+1]. The same argument applies to

y provided we check that the inequality

(3.14) 〈u̇(t)− ẏ(t), y(t)− w〉 � 0 ∀w ∈ Z

holds in ]tk, tk+1[.
Equation (3.2) yields

(3.15) ṙk(t− tk) =
1− g(tk+1 − t) g(rk(t− tk))

1 + g2(rk(t− tk))
for t ∈ ]tk, tk+1[,

hence

(3.16) u̇(t)− ẏ(t) =
g(tk+1 − t) + g(rk(t− tk))√

1 + g2(rk(t− tk))
n(y(t)),

where

(3.17) n(y(t)) :=
1√

1 + g2(rk(t− tk))

(
g(rk(t− tk))

−1

)

is the unit outward normal to Z at the point y(t) and inequality (3.14) follows from

the convexity of Z. We have thus proved that identities (3.11) are fulfilled.
An elementary computation yields for all j ∈ � ∪ {0}

∫ tj+1

tj

∣∣u̇(t)
∣∣ dt =

∫ tj+1

tj

√
1 + g2(tj+1 − t) dt(3.18)

=
∫ aj

0

√
1 + g2(s) ds �

√
2 aj,

∫ tj+1

tj

∣∣ẋ(t)− ẏ(t)
∣∣ dt =

∫ tj+1

tj

g(tj+1 − t) + g(rj(t− tj))√
1 + g2(rj(t− tj))

dt(3.19)

� 1√
2

∫ tj+1

tj

g(tj+1 − t) dt =
1√
2
G(aj).

The proof of Theorem 2.2 consists in choosing an appropriate value of a0 in the
above construction and putting

(3.20) u(t) :=

{
u(t) for t ∈ [0, tn],
u(tn) for t ∈ ]tn, 1],

with some n depending on a0 such that tn < 1. More precisely, we choose n to be
the integer part of 1/(

√
2 a0),

(3.21) n :=

[
1√
2 a0

]
,
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and, according to assumption (3.1), we have

(3.22)
1

2
√
2

� na0 � 1√
2
.

Definition (3.5) yields

tn =
n−1∑

k=0

ak � na0 � 1√
2
< 1,

hence formula (3.20) is meaningful. Inequality (3.18) yields

(3.23) |u|1,1 =
∫ 1

0
|u̇(t)| dt =

n−1∑

k=0

∫ tk+1

tk

∣∣u̇(t)
∣∣ dt �

√
2
n−1∑

k=0

ak � 1.

Let now R > 0 be given. The proof will be complete if we check that inequality (2.3)
holds for a suitable choice of a0.

Let us first estimate the integral
∫ 1
0 |ẋ(t)− ẏ(t)| dt from below. We obviously have

x = x, y = y in [0, tn], ẋ = ẏ = 0 in ]tn, 1[, consequently

(3.24)
∫ 1

0
|ẋ(t)− ẏ(t)| dt =

n−1∑

k=0

∫ tk+1

tk

∣∣ẋ(t)− ẏ(t)
∣∣ dt � 1√

2

n−1∑

k=0

G(ak)

according to inequality (3.19).

We define auxiliary functions

(3.25) ϕ(s) := 2sg2(s) Φ(s) :=
∫ ε

s

dr
ϕ(r)

for s ∈ ]0, ε].

Then Φ′ = −1/ϕ, Φ(ε) = 0, Φ(0+) = +∞, ϕ(0) = 0 and Hypothesis 2.1 (ii) entails
lim
s→0+

ϕ′(s) = 0. Inequality (3.4) can be written in the form

(3.26) ak+1 � ak − ϕ(ak),

which implies that

(3.27) Φ(ak+1)− Φ(ak) =
∫ ak

ak+1

dr
ϕ(r)

� ak − ak+1
ϕ(ak+1)

� ϕ(ak)
ϕ(ak − ϕ(ak))

for k ∈ � ∪ {0}. Note that

(3.28) lim
s→0+

ϕ(s)− ϕ(s− ϕ(s))
ϕ(s)

= lim
s→0+

1
ϕ(s)

∫ s

s−ϕ(s)
ϕ′(r) dr = 0,
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hence

(3.29) lim
s→0+

ϕ(s)
ϕ(s− ϕ(s))

= 1.

Consequently, we can put

(3.30) α := sup
s∈ ]0,ε]

ϕ(s)
ϕ(s− ϕ(s))

<∞

and from inequality (3.27) it follows that

(3.31) Φ(ak+1)− Φ(ak) � α ∀k ∈ � ∪ {0}.

Let Φ−1 : �+ → ]0, ε] be the inverse function to Φ. Summing up the above inequal-
ities over k, we obtain

(3.32) ak � Φ−1(Φ(a0) + αk) ∀k ∈ � ∪ {0}.

Combining relations (3.32) and (3.22), we have

n−1∑

k=0

G(ak) �
n−1∑

k=0

G
(
Φ−1(Φ(a0) + αk)

)
�

∫ n

0
G

(
Φ−1(Φ(a0) + αx)

)
dx(3.33)

�
∫ 1

2
√
2a0

0
G

(
Φ−1(Φ(a0) + αx)

)
dx.

The estimates (3.33) and (3.24) together with the elementary inequality
∣∣x0 − y0

∣∣ =√
a20 +G2(a0) �

√
2a0 show that Theorem 2.2 will be proved if

(3.34) lim sup
s→0+

1
s

∫ 1
2
√
2s

0
G

(
Φ−1(Φ(s) + αx)

)
dx =∞,

that is,

(3.35) lim sup
s→0+

1
s

∫ Φ(s)+ β
s

Φ(s)
G(Φ−1(y)) dy =∞ with β =

α

2
√
2
.

By Hypothesis 2.1 (ii), we have 2G(z) � zg(z) and g(z) � g(s) for 0 < z < s < ε,
hence

1
s

∫ Φ(s)+ β
s

Φ(s)
G

(
Φ−1(y)

)
dy =

1
2s

∫ s

Φ−1(Φ(s)+ β
s )

G(z)
zg2(z)

dz(3.36)

� 1
4g(s)

(
1− 1

s
Φ−1

(
Φ(s) +

β

s

))
.
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Let us define an auxiliary function ψ(v) := 1/Φ−1(v) for v > 0. Then ψ(0) = 1/ε,

lim
v→+∞

ψ(v) = +∞, ψ is increasing in �+ and satisfies the differential equation

(3.37) ψ′(v) = 2ψ(v) g2
(
1

ψ(v)

)
.

By the change of variables s = 1/ψ(v) we obtain

(3.38)
1
s
Φ−1

(
Φ(s) +

β

s

)
=

ψ(v)
ψ(v + βψ(v))

.

According to the Mean Value Theorem, for all v > 0 we have

(3.39)
ψ(v + βψ(v))

ψ(v)
= 1 + βψ′(m(v))

for some m(v) ∈ [v, v + βψ(v)]. Using Eq. (3.37) and the fact that the function
s �→ g(s)/s is decreasing, we obtain

ψ(v + βψ(v))
ψ(v)

= 1 + 2β ψ(m(v))g2
(

1
ψ(m(v))

)
(3.40)

� 1 + 2β
ψ2(v)g2

(
1

ψ(v)

)

ψ(m(v))

� 1 + 2β
ψ2(v)g2

(
1

ψ(v)

)

ψ(v + βψ(v))
,

hence

(3.41)
ψ(v + βψ(v))

ψ(v)
� 1
2
+

(
1
4
+ 2βψ(v)g2

(
1

ψ(v)

))1/2
∀v > 0.

In terms of s = 1/ψ(v), the above inequality reads

(3.42)
1
s
Φ−1

(
Φ(s) +

β

s

)
�

(
1
2
+

(
1
4
+ 2β

g2(s)
s

)1/2)−1
∀s ∈ ]0, ε],

and we conclude that for all s ∈ ]0, ε] we have

(3.43)
1
g(s)

(
1− 1

s
Φ−1

(
Φ(s) +

β

s

))
� 2β g(s)

s

(
1
2
+

(
1
4
+ 2β

g2(s)
s

)1/2)−2
.
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Taking into account estimates (3.36) and (3.43), we see that relation (3.35) is fulfilled

provided

(3.44) lim sup
s→0+

g(s)
s

(
1
2
+

(
1
4
+ 2β

g2(s)
s

)1/2)−2
= +∞.

We distinguish two cases.
A. ∃γ > 0: lim sup

s→0+
g2(s)/s � γ.

The function x �→ x
(
1/2 + (1/4 + x)1/2

)−2
is increasing for x > 0, hence

lim sup
s→0+

g2(s)
s

(
1
2
+

(
1
4
+ 2β

g2(s)
s

)1/2)−2
� γ

(
1
2
+

(
1
4
+ 2βγ

)1/2)−2
> 0

and lim
s→0+

1/g(s) = +∞, which yields the assertion.
B. lim

s→0+
g2(s)/s = 0.

Then

lim
s→0+

(
1
2
+

(
1
4
+ 2β

g2(s)
s

)1/2)−2
= 1

and lim
s→0+

g(s)/s = +∞, with the same conclusion as above.
Theorem 2.2 is proved. �
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[13] P. Krejčí: Evolution variational inequalities and multidimensional hysteresis operators.
In: Nonlinear Differential Equations (P. Drábek, P. Krejčí and P. Takáč, eds.). Research
Notes in Mathematics, Vol. 404. Chapman & Hall/CRC, London, 1999, pp. 47–110.

[14] J.-J. Moreau: Evolution problem associated with a moving convex set in a Hilbert space.
J. Differential Eqations 26 (1977), 347–374.

[15] J. Nečas, I. Hlaváček: Mathematical Theory of Elastic and Elastico-Plastic Bodies: An
Introduction. Elsevier, Amsterdam, 1981.

[16] A. Visintin: Differential Models of Hysteresis. Springer-Verlag, Berlin-Heidelberg, 1994.

Author’s address: Pavel Krejčí, Mathematical Institute, Academy of Sciences of the
Czech Republic, Žitná 25, 115 67 Praha 1, Czech Republic, e-mail: krejci@math.cas.cz.

11


		webmaster@dml.cz
	2020-07-02T10:07:45+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




