[1] F. Brezzi, M. Fortin:
Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York, 1991.
MR 1115205
[2] P. G. Ciarlet:
Basic error estimates for elliptic problems. In: Handbook of Numerical Analysis, v. II – Finite Element Methods (Part 1), P. G. Ciarlet, J. L. Lions (eds.), North-Holland, Amsterdam, 1991, pp. 17–351.
MR 1115237 |
Zbl 0875.65086
[3] P. G. Ciarlet, P.-A. Raviart:
The combined effect of curved boundaries and numerical integration in isoparametric finite element methods. In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A. K. Aziz (ed.), Academic Press, New York, 1972, pp. 409–474.
MR 0421108
[4] G. J. Fix, M. D. Gunzburger and J. S. Peterson:
On finite element approximations of problems having inhomogeneous essential boundary conditions. Comput. Math. Appl. 9 (1983), 687–700.
MR 0726817
[5] V. Girault, P.-A. Raviart:
Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin, 1986.
MR 0851383
[6] P. Knobloch:
Solvability and Finite Element Discretization of a Mathematical Model Related to Czochralski Crystal Growth. PhD Thesis, Preprint MBI-96-5, Otto-von-Guericke-Universität, Magdeburg, 1996.
Zbl 0865.65094
[7] P. Knobloch:
Variational crimes in a finite element discretization of 3D Stokes equations with nonstandard boundary conditions. East-West J. Numer. Math. 7 (1999), 133–158.
MR 1699239 |
Zbl 0958.76043
[8] J. Nečas:
Les Méthodes Directes en Théorie des Équations Elliptiques. Academia, Praha, 1967.
MR 0227584
[9] E. M. Stein:
Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, 1970.
MR 0290095 |
Zbl 0207.13501
[10] G. Strang, G. J. Fix:
An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs, New Jersey, 1973.
MR 0443377
[11] A. Ženíšek:
How to avoid the use of Green’s theorem in the Ciarlet-Raviart theory of variational crimes. RAIRO, Modelisation Math. Anal. Numer. 21 (1987), 171–191.
DOI 10.1051/m2an/1987210101711 |
MR 0882690