Previous |  Up |  Next

Article

Keywords:
Stefan problem; domain dependence; Mosco-type covergence of domains
Summary:
We prove that solutions to the two-phase Stefan problem defined on a sequence of spatial domains $\Omega _n\subset \mathbb{R}^N$ converge to a solution of the same problem on a domain $\Omega $ where $\Omega $ is the limit of $\Omega _n $ in the sense of Mosco. The corresponding free boundaries converge in the sense of Lebesgue measure on $\mathbb{R}^N$.
References:
[1] D. Blanchard, H. Redwane: Solutions renormalisées d’equations paraboliques à deux non linéarités. C. R. Acad. Sci. Paris, Sér. I, 319 (1994), 831–835. MR 1300952
[2] L. Boccardo, F. Murat: Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations. Nonlinear Analysis 19 (6) (1992), 581–597. DOI 10.1016/0362-546X(92)90023-8 | MR 1183665
[3] D. Bucur, J. P. Zolesio: $N$-dimensional shape optimization under capacity constraints. J. Differential Equations 123 (1995), 544–522. MR 1362884
[4] M. G. Crandall, H. Ishii and P.-L. Lions: User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27 (1) (1992), 1–67. DOI 10.1090/S0273-0979-1992-00266-5 | MR 1118699
[5] G. Dal Masso and U. Mosco: Wiener’s criterion and $\Gamma $ convergence. Appl. Math. Optim. 15, 15–63. MR 0866165
[6] E. N. Dancer: The effect of domain shape on the number of positive solutions of certain nonlinear equations, II. J. Differential Equations 87 (1990), 316–339. MR 1072904 | Zbl 0729.35050
[7] D. Daners: Domain perturbation for linear and nonlinear parabolic equations. J. Differential Equations 129 (2) (1996), 358–402. DOI 10.1006/jdeq.1996.0122 | MR 1404388 | Zbl 0868.35059
[8] E. DiBenedetto: Interior and boundary regularity for a class of free boundary problems. In: Free boundary problems: theory and applications, II., A. Fasano, M. Primicerio (eds.), Research Notes in Math., vol. 78, Pitman, Boston, 1983, pp. 383–396. MR 0714925 | Zbl 0516.35081
[9] A. Friedman: Variational Principles and Free-Boundary Problems. John Wiley, New York, 1982. MR 0679313 | Zbl 0564.49002
[10] J. K. Hale and J. Vegas: A nonlinear parabolic equation with varying domain. Arch. Rat. Mech. Anal. 86 (1984), 99–123. DOI 10.1007/BF00275730 | MR 0751304
[11] A. Henrot: Continuity with respect to the domain for the Laplacian: a survey. Control Cybernet. 23 (3) (1994), 427–443. MR 1303362 | Zbl 0822.35029
[12] A. M. Meirmanov: The Stefan Problem. De Gruyter, Berlin, 1992. MR 1154310 | Zbl 0751.35052
[13] O. Pironneau: Optimal Shape Design for Elliptic Systems. Springer-Verlag, Berlin, 1984. MR 0725856 | Zbl 0534.49001
[14] J. Rauch, M. Taylor: Potential and scattering theory on wildly perturbed domains. J. Functional Anal. 18 (1975), 27–59. MR 0377303
[15] V. Šverák: On optimal shape design. J. Math. Pures Appl. 72 (1993), 537–551. MR 1249408
Partner of
EuDML logo