Previous |  Up |  Next

Article

Keywords:
$(1,2)$-inverse; Moore-Penrose inverse; Sherman-Morrison-Woodbury formula; quasidirect sum
Summary:
We present some results on generalized inverses and their application to generalizations of the Sherman-Morrison-Woodbury-type formulae.
References:
[1] A. Ben-Israel, T. N. E. Greville: Generalized Inverses: Theory and Applications. Wiley-Interscience, New York, 1974. MR 0396607
[2] M. Fiedler: Remarks on the Schur complement. Linear Algebra Appl. 39 (1981), 189–196. DOI 10.1016/0024-3795(81)90302-5 | MR 0625249 | Zbl 0465.15004
[3] M. Fiedler, T. L. Markham: Quasidirect addition of matrices and generalized inverses. Linear Algebra Appl. 191 (1993), 165–182. MR 1233470
[4] M. Fiedler, T. L. Markham: A characterization of the Moore-Penrose inverse. Linear Algebra Appl. 179 (1993), 129–133. DOI 10.1016/0024-3795(93)90325-I | MR 1200147
[5] G. Marsaglia, G. P. H. Styan: Equalities and inequalities for ranks of matrices. Linear Multilinear Algebra 2 (1974), 269–292. DOI 10.1080/03081087408817070 | MR 0384840
[6] J. Sherman, W. J. Morrison: Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Ann. Math. Statist. 21 (1950), 124. DOI 10.1214/aoms/1177729893 | MR 0035118
[7] M. Woodbury: Inverting modified matrices. Memorandum Report 42, Statistical Research group, Princeton 1950. MR 0038136
Partner of
EuDML logo